A Specification-Driven Approach
to Embedded FDIR Code Generation*

Federico Bonafini', Roberto Cavada?, Alessandro Cimatti?,
Guillermo Gomez?, and Stefano Tonetta?

! Innova Engineering, Tione, Italy
2 Fondazione Bruno Kessler, Trento, Italy

Abstract. Fault Detection, Isolation, and Recovery (FDIR) compo-
nents are essential for managing faults and ensuring safety and reliability
in safety-critical applications. This paper presents a specification-driven
approach to the automatic generation of embedded FDIR code. Our
method leverages formal specifications of fault conditions and recovery
procedures to synthesize fault detection and recovery mechanisms, re-
ducing manual coding and the potential for human error. The proposed
toolchain translates high-level specifications into platform-specific em-
bedded code, while model checking can be used to validate and verify
the FDIR logic. We detail the underlying architecture, the specification
language, and the code generation process, highlighting the flexibility
and scalability of the approach. Through a case study in the energy do-
main, we demonstrate the tool’s ability to handle complex fault scenarios,
improve development efficiency, and enhance system reliability.

1 Introduction

Embedded software-based systems have enabled the implementation of complex
control functionalities, ensuring energy-efficient and adaptive operations, and a
high degree of parameterization. Among these capabilities, fault management
is particularly crucial, especially in safety-critical systems, as it ensures contin-
ued operation even in degraded, non-nominal conditions. At design time, hazard
analysis and safety assessments are conducted, with fault prevention and recov-
ery strategies implemented through monitoring and reconfiguration procedures,
as well as redundant equipment. These safety mechanisms are often then handled
by control software, which provides high degree of parametrization and reuse.
The concept of FDIR encompasses a set of functions for fault management
that include detecting the occurrence of a fault, identifying it, and applying the
appropriate recovery actions. FDIR interacts with the plant to read input data
and with the controller to command reconfiguration of redundant components
or other recovery procedures. FDIR can be conceptually divided into two main

* The work is financed by the Autonomous Province of Trento in scope of L.P. No.
6/1999 with determination. No. 592 of 09/08/2021. — Ref.: 2021-AG12-00783. -
project NPDCR (New residential heat pump)

components (see Fig. ??): Fault Detection and Isolation (FDI), which focuses
on detecting and identifying faults, and Fault Recovery (FR), which applies the
most suitable response based on the detected fault.

Designing FDIR modules presents
significant challenges. On one hand,
FDI often requires to monitor com-
plex temporal extended conditions.
On the other, defining appropriate re- -
covery actions requires covering all CONTROLLER o D

USER

possible fault combinations and ar- |
ranging them based on their priorities. T T I

In fact, faults can occur even during

the execution of a recovery procedure 10 PLANT

intended to address a different issue

with lower criticality. While model- Fig. 1. FDIR function overview

based safety analysis techniques have

been proposed to design FDIR components with formal methods, they neglect
the complexity of software interfaces and the need of the FDIR software to in-
teract with procedures and data structures provided by the platform.

In this paper, we propose a novel end-to-end approach to the development
of FDIR software. The idea is to start from a high-level specification and auto-
matically generate platform-specific code suitable for deployment on embedded
controllers with real-time constraints, thereby reducing manual effort and mini-
mizing human error. The advantages of the approach are manifold: first, it can
handle many fault conditions avoiding entangled solutions, by separating mon-
itoring from recovery, and defining a clear priority on the concurrent recovery
actions; second, it can be adapted to different platforms; third, it allows for the
application of formal verification techniques to check the FDIR logic.

The approach has been devised in the context of a long-term collaboration
between Innova Engineering (IE) and FBK, and was driven by the goal of defin-
ing a structured software development process customized for the portfolio of
IE products. We discuss its application to a real-world case study, a heat pump
controller that is representative of the most recent products of the company.

The key contributions of this work are as follows:

A specification-driven methodology for defining fault conditions, detection

mechanisms, and recovery procedures in a structured and formalized manner.

— An automated toolchain that translates high-level specifications into platform-
specific embedded code.

— A principled integration of formal verification through model checking tech-

niques, enabling rigorous validation of FDIR logic before deployment.

A case study in the energy domain, demonstrating the effectiveness of our

approach in handling complex fault scenarios while enhancing reliability.

2 Related works

A wide literature studied model-based fault detection and diagnosis, which lever-
age mathematical models of system dynamics. There are two primary approaches:
one rooted in control theory and the other based on logic and artificial intelli-
gence (AI) (see [?]). The control-theoretic approach [?,7,?] [?,?,2,7] relies on
dynamic system models (e.g., system of differential equations), and use methods
such as state observers, Kalman filters, and parity relations to detect and isolate
faults.

The logic and Al-based approach, in contrast, leverages formal methods, ex-
pert systems, and machine learning techniques for fault detection and diagnosis.
Model-based diagnosis [?,?] approaches use logic satisfiability to check consis-
tency between expected and observed behavior. Model-Based Safety Analysis
(MBSA) uses model checking techniques to analyze the design of safety mecha-
nisms [?], including FDIR components. It starts from a component-based model
with high level view of the component behaviors, and inject faults in these mod-
els to validate the reaction of the FDIR. This process has been integrated in
standard aerospace development process [?] and in a ESA toolchain [?]. Recent
work has also applied model checking to assess and improve fault tolerance of
satellite systems [?], focusing on verifying existing logic at system level rather
than synthesizing embedded-level components from formal specifications. Logic
based specification of FDIR has been formalized in [?,?], dealing with the in-
herent epistemic problem of diagnosability. Finally, the monitoring of properties
specified in temporal logic can be solved with runtime verification techniques [?].

In the above mentioned works, recovery mechanisms are also divided between
control-theoretic strategies, such as adaptive and fault-tolerant control, and logic
or Al-based strategies, such as planning or reinforcement learning. However, in
both cases, most of the academic works are not adopted at industrial level [?].
One of the reasons is that they neglect the complexity of managing software
procedures for recovery and handling the logic of switching between them, which
is the main contribution of this paper. In general, there is a lack of guidance
and tool support for implementing complex FDIR components at software level.
An example of such efforts is the development of an FDIR software fault tree
library for onboard computers [?], which focuses on reuse and structuring of
fault handling logic, though without formal specification or automatic synthesis.
In the direction of closing this gap, this paper proposes a specification-based
methodology and a tool support applied to a real-world scenario.

3 Preliminary notions

3.1 Temporal Logics and Formal Verification

We adopt temporal logic [?] as a formalism for the specification of properties
of execution traces. Temporal logics are common in formal verification [?,?]
to represent different kinds of requirements. Properties over the states (e.g.,

“temperature>threshold”) constitute the basic elements of formulas. Tem-
poral operators such as “always in the future” (G) and “sometimes in the fu-
ture” (F) can be nested to express complex temporal properties. For example,
it is possible express FDIR properties, like requiring that an alarm is trig-
gered whenever the temperature is too high (“G ((temperature>threshold)
implies alarm-high-temp)”), or that a suitable response is eventually deliv-
ered (“G ((temperature>threshold) implies F recovery-high-temp)”).In
addition to future time operators, it is often convenient to adopt past operators,
such as “historically” (H) or “once” (0) in the past and that allow to express
properties over past states. Finally, metric operators like in the last n steps (H
[0,n]) are used to constrain an interval of time. In the following, we use LTL
(with all operators mentioned above) for model checking, while runtime verifi-
cation is applied to PastLTL, the fragment that uses only the past operators.

Model checking is a technique to verify whether the model of a system sat-
isfies a property, i.e. all its traces satisfy the property. The model is typically
described as a symbolic transition system and symbolic verification of temporal
properties is performed with algorithms combining deduction and reachability
through logic-based operations (see [?] for a survey).

Runtime verification [?] is a lightweight verification technique intended to
analyze the observable signals of a running system. The idea is to evaluate a
temporal logic specification of the property on the actual execution of the sys-
tem. Then, the automata-theoretic approach produces an observer that is put in
synchronous product to the system under observation and raises a flag then the
current trace is violated. Runtime verification is considered to be appealing since
it is logically well founded, does not alter the nominal behavior of the system
under analysis, and supports various implementation patterns.

3.2 SDL, ASN.1 and OpenGeode

For code generation, we rely internally on SDL and ASN.1, and the OPEN-
GEODE tool support. SDL (Specification and Description Language) is an es-
tablished standard formal language to describe both networks of communicating
state machines at system level, and the specification of the behavior of Finite
State Machine (FSM). SDL comes with both a graphical and textual notation
for the specification of the system, the communication ports and connections,
functional blocks definition, and behavior specification in FSM. Transitions are
triggered by events such as reception of a queued message, or certain observed
condition becoming true, or a timer expiring. Operations admitted in transitions
include setting variables and timers, and sending events to other blocks through
ports and connections among them. Conditions and operation can be organized
in functions and procedures. State machines can be hierarchical, meaning that
a given high level state of the machine can contain an inner state machine.
SDL is supported by various commercial and open source editors and com-
pilers. OPENGEODE is an open source graphical editor which features also au-
tomatic code generation in Ada and C. OPENGEODE presents both some limi-
tations and extensions to the SDL language. In particular it removes the sup-

port for the data type system of SDL, and provides instead support for the
ASN.1 specification. ASN.1 is a formal specification used to describe data types
with constraints, and constant values. The ASN.1 specification is compiled by
AsN1scc, an open source compiler for ASN.1 for data structures and encod-
ing/decoding code, with multiple target languages like Ada, C and Scala.

The main advantage of using SDL + ASN.1 and OPENGEODE + ASN1SCC
over other widespread languages and code generators (e.g. the common pair
Stateflow/Matlab) is the well-described and clear formal semantics of SDL
which greatly simplified the automatic translation of the FDIR specifications
into a FSM based representation in SDL. Using SDL and ASN.1 as standard
intermediate languages allowed us to rely on OPENGEODE and ASN1SCC to gen-
erate automatically the code, which proved to be easily integrated into both
the host and target embedded platforms. However, SDL was not considered for
the frontend specification language. Instead, we preferred a tabular format for
the specification of the fault modes, in a form very similar to the FMEA tables
(Failure Mode and Effects Analysis) which the domain experts are familiar with.
For the same reasons, for the specification of the recovery procedures we pre-
ferred a syntactically limited language to describe the corresponding procedural
steps.

4 Specification-Driven FDIR Code Generation

In this section, we describe the methodology that we propose to generate the
FDIR code from a high-level specification. We start from giving an overview of
the approach (Sec. ??7). We then detail the specification in terms of failure con-
ditions (Sec. ??), recovery procedures (Sec. ??), and failure mode management
(Sec. 7?). In Sec. 7?7 and ??, we detail the process of generating respectively the
code and the model for formal verification.

4.1 Overview of the Specification-Based Methodology

In this section, we describe the methodology that we propose to generate the
FDIR code from a high-level specification and the the tool called FDIRGEN that
supports it. The tools is publicly available at https://fm.fbk.eu/tools/fdirgen/.
We start from giving an overview of workflow of the approach, depicted in
Fig. 7?7. The inputs are the artifacts provided by the user, i.e. the controller
interface and the FDIR specification.

The controller interface consists of a set of declarations to define the signals
and the primitives that will be available for the generated FDIR code. These
include user-defined data types (e.g., structs, ranged integers), input and out-
put variables, functions to perform calculations over the inputs, and functions
representing commands writing on the outputs.

The FDIR specification is given by a table, defining monitoring conditions,
recovery procedures and a Finite-State Machine (FSM) defining the operational
modes of the FDIR. The specification is therefore hierarchical: the FSM defines

Controller Interface FDIR Specification

N 2
Inputs Outputs yd Failure Modes

init s
state so

recovery transitions.

tineout=zn-> .

procedure:|.

state s1

condition:
GroupID:

J
_ J J
FDIRGen
f monitor generator B fsm generator \
ailure modes) : ° recovery
conditions iz procedure;
SMvGen SDLCompiler
@D e |
NuRV ; pengeod
_ 5 £dir.smv
et MONITORS l

fd.

False X True

Trucelzl
tickFDIR()
%{ Existing System]

Fig. 2. Workflow of the Specification-Based Approach

the top-level modes and the transitions to switch between modes; each mode
is then associated to a monitoring condition and to a recovery procedure. As
shown in Fig. 7?7, the FDIR specification table is composed of three main parts:

fault detection and isolation conditions defined in PastLTL and specified
over input variables and input functions; (detailed in Sec. ?7)

recovery procedures defined as state machines extended with timeout con-
straints specified in a domain specific language; the procedures call the out-
put functions to write on output variables; (Sec. 77)

priorities and threshold groups determining the mode transitions. (Sec. 7?)

FDIR | Fault Detection | Fault Isolation | Priority | Threshold | Fault Recovery
mode Condition Condition Group Procedure
Mode 1 Condition X High Group 1 Restart System
Mode 2 | Condition A Condition Y Medium | Group 2 Switch to Backup
Mode 3 Condition Z Low Group 3 Alert Operator

Fig. 3. FDIR Specification Table structure.

The specification is given to the FDIRGEN software, which generates the
FDIR code that interacts with the system controller. The resulting FDIR code
is composed by a monitor module and an FSM module. (Detailed in Sec. ?7?)

The FDIRGEN software can also generate a model specified in SMV, the
input language of the nuXmv model checker. The model represents the same
FDIR logic that is encoded in the generated code. Thus, the SMV model can
be used to validate and verify the FDIR logic with model checking techniques.
(Detailed in Sec. ?77?)

Running Example We illustrate the approach through a running example.
This is based on a simple specification, with two sources of power, the main one
and the secondary that is activated in case of main failure. We want an FDIR
system to be able to detect cases where we have been relying on the secondary
pump for too long, and cases where both of the power supplies are failing.

Starting from the specification table, for the running example, we can define
the following table to express the mentioned properties (we removed group id
and isolation condition for space constraints):

FDIR | Fault Detection Condi- | Priority | Fault Recovery
mode tion Procedure

init restarted [restart_power();]

H[Os 108] A —main state restarted:
s =

Mode 1 1 transitions:
A H|0s, 20s] A —secondary Py = A
main -> ok
Mode 2 SR 2 Switch to Backup

S[10s, 10s]!main

Fig. 4. Running example FDIR specification

As far as interface is concerned, we need both attributes used on the proper-
ties and the recovery procedures (these procedures are the ones on the existing
system, we just have to specify the header).

Input attributes:

bool main;
bool secondary;

Commands for the controller:

void recovery();
void restart_power ();

4.2 Monitoring Conditions

The monitoring conditions are specified in an extended version of PastLTL over
the input variables, where:

— in the atomic conditions, we can specify arithmetic constraints combining in-
put variables with calls to the input functions (e.g., “abs (expected _flow()
-flow)>delta”, where abs is a macro for the absolute value;

— the time bounds of interval in the metric operators are expressed in time
units that may be milliseconds (ms), seconds (s), or minutes (m).

The PastLTL operators allow to specify temporally extended conditions.
Typical patterns of conditions that we use for monitoring are Hy(«a;) and ag A
Oj(as) where oy and s are atomic conditions. The first one identifies the sit-
uation in which a condition «; lasts continuously in the interval I. The second
one identifies the situation in which we detect s and in a previous moment,
within the interval I, oy was true. Examples of these patters are:

H [0s, 30s] abs(expected_flow()-flow)>delta

which is true in the moment in which, for the last 30 seconds, the expected flow
differed from the actual one more than a certain delta constant;

flow=0 & 0 [Oms, 20ms] flow>high_value

which is true in the moment in which the flow drops to zero from a high value
that was read in the previous 20 ms.

In order to ease and organize better the specification of the conditions, they
are divided into two columns of the specification table. The first column, called
fault detection condition, should contain the conditions that identify the detec-
tion of a fault and trigger the alarm. The second column, called fault isolation
condition, should contain the conditions that try to discriminate the cause of the
problem and used to differentiate between one mode and another. Multiple isola-
tion conditions can be associated to one fault detection condition. For example,
to detect a fault we may check if the temperature is different from the set value
and does not change. This may be caused by potentially different causes, which
can be distinguished by checking if the fan is working and if there is power.

4.3 Recovery Procedures

The recovery procedures are specified in a domain-specific modeling language.
This is a textual specification of states, transitions, and timeouts. The purpose
is to provide a simple high-level specification of the procedures avoiding cumber-
some code for input/output, timers or complex data structures. For example, in

order to update an output variable x increasing its value by another input vari-
able y, we would simply write x += y; in SDL external variables cannot be used
directly, so we would have to write a getter on each variable access, and a setter
on every update; in our example, this would look like the following sequence:
get_x(x); get_y(y); setx(x + y).

Thus, each recovery procedure provides a list of states, and for each state, a
list of outgoing transitions that write on the output variables of the controller
through the output functions specified in the controller interface and change
the state of the procedure. An init statement represents the initial state of the
procedure. Optionally, an effects section can follow, specifying initial conditions
or setup actions. The procedure may define a set of local variables, followed by
the declaration of states utilized within the procedure.

Each program has two implicit terminating states:

— ok: it indicates successful recovery and leads to a nominal system mode.
— fail: it denotes an unrecoverable error, leading to a stophold system mode.
The program terminates whenever one of these two states is entered.

For each state, the program lists a sequence of possible transitions. Each
transition has a guard and an effect. The first transition with the guard that
evaluates to true is taken, the effect is executed, which include to go to a new
state or remain in the current one. Transitions between states are prioritized,
with priority determined by the order in which transitions are declared. Each
state may optionally specify an invariant condition that must hold upon entry.
If the condition is violated, execution transitions immediately to the fail state.

States are equipped with local timeouts, which reset each time the state is
re-entered and can be used in the guards of transitions. Additionally, timeouts
can be defined over a set of states, resetting whenever execution enters this set
from an external state. This feature is useful when modeling loops involving one
or more states, allowing explicit control over their execution duration. As for the
monitoring conditions, time constraints use time units.

The following listing gives a simple example of recovery procedure.

init check_velocity [req_speed := 0;]

timeout checking_loop : timeout=3m on
{check_velocity, check_temperaturel;

state check_velocity:
invar: req_velocity > 0
transitions:
checking_loop -> fail
timeout=2s -> check_velocity
[velocity > req_velocity \ req_velocity += 2;]
-> check_temperature

state check_temperature:
transitions:
checking_loop -> fail

timeout=420ms -> check_temperature
[temp > avg_temp \ req_temp += 0.2;]

-> check_temperature
// if the velocity went down again, keep speeding up
velocity < req_velocity -> check_velocity

4.4 Specification of the FDIR FSM

The FDIR FSM consists of a list of modes and a list of mode transitions. The
modes are implicitly defined by the rows of the FDIR specification table. Two
additional modes are predefined and added to the list: the nominal mode, which
is also the initial one; the stophold mode, which is entered when a recovery
procedure fails and cannot be exited (at the moment no reset of the FDIR is
considered). Fig. ?? shows a pictorial view of an example FDIR FSM.

fail

Priorities
Fl: 1
F2: 5
F3: 7

Fig. 5. Top Level FSM example

The specification table assigns a priority to every mode. The nominal mode
is given priority 0, while the stophold mode is given a priority higher than any
other.

The specification table assigns also a group and to each group a threshold.
The FSM maintains a counter for each group, which is increased whenever the
FSM enters a mode of that group. Whenever the threshold is reached, the FSM
goes to stophold mode. The purpose is to avoid continuous spurious recoveries,
which happens when the procedure brings the FDIR to nominal mode, but the
problem is not really solved and the same mode is entered again and again.

Overall, the FSM mode transitions are defined as follows. When the FSM
receives an alarm from the monitor the next mode is determined by the following
rules:

— if the current mode has higher or equal priority than the new one, then the
next mode is determined by the current recovery procedure: it remains the
current one if not completed, it becomes nominal if completed, or stophold
if aborted;

— if the current mode has lower priority of the new one, then the counter
associated to the new mode group is increased, and if it did not reached
the threshold, the next mode is set to the new mode; otherwise it is set to
stophold. If the mode is changed, the counter of the current mode (if the
group is different from the new one) is reset.

4.5 Code Generation Process

The code generation is organized into three main parts, reflecting the three
different components of the generated code: monitor generation, FSM generation
and interface generation.

The monitor generation relies on standard runtime verification techniques to
generate a deterministic finite-state automaton to monitor a temporal formula
(see, e.g., [?]). In our implementation, we use the NuRV runtime verifier [?] to
generate the single monitor code for each property, and then a MonitorHandler
is configured to handle these monitors and connect their output to the alarms
accepted by the FDIR FSM.

More specifically, the generation of the monitors proceed as follows:

— Preprocess the monitoring conditions to
e remove time units converting the time constraints into bounds on number
of FDIR ticks, and
e replace functions with fresh variables with the same type of the function
return value.
— Generate C monitors with NuRV.
— Generate the MonitorHandler with the glue code to connect the input/out-
put of the monitor with the system controller and the FDIR FSM.

For the FSM generator, the code generation relies on OPENGEODE which
takes in input an SDL description of the FSM. For this reason, the internal
representation of the FDIR FSM is created from the table specification and
then dumped into a file with the SDL syntax. OPENGEODE is then called to
generate the corresponding C code.

The final step is to generate the code that provides the interface with the
controller. This contains, on one side, all the setters/getters and commands
accessible from the FDIR component, and on the other side, the implementation
of the tick function, which performs the duty cycle of reading inputs, calling the
monitor, calling the FDIR FSM to update the FDIR mode, update the state of
the recovery procedure in the updated mode and writing outputs.

Running Example The code generation for the interface in our example, could
be as follows:

// Variables and procedures living in the existing system

extern void restart_power ();

extern unsigned char main_power_supply;

// Generated functions

void fsm_RI_getsecondary_power_supply(asniSccTBoolean* value)
(xvalue)=secondary_power_supply;

}

//. ..

For the Monitor Handler we follow a clean approach, where we separate the
reading of inputs and the checking of the properties (we import a*.h which
source files contain the explicit automata for the properties):

#include "MonitorHandler .h"

int a3loc = 1; // initial location(state) of the automata.
a3_input_t input_a3;
//

void tick_monitors () {
RV_value val;
read_inputs(); // Update C monitors with current values.
val = a3_scalar(&input_a3, NULL, 2, &a3loc);
if (val == RV_TRUE) fsm_PI_a3(); // send alarm to FSM
//
}

The SDL FSM can be viewed from OPENGEODE:

er_supply TBoolean;
dary_power_supply TBaolean;

Fig. 6. SDL FSM components of the running example

4.6 Formal Verification

The generation of the SMV model for formal verification follows a similar ap-
proach. The SMV model is modular and reflects the hierarchical structure of the
FDIR specification. The top level FSM is represented by the main module, while
each FDIR mode is represented by a separate module whose behavior represents
the corresponding recovery procedure. For lack of space, we omit the details,
but the translation follows the semantics specified in the previous sections in a
straightforward way.

The generic structure of the SMV model is reported in the following snippet:

MODULE main
-- nominal is lowest priority, and stophold highest.

DEFINE priority := [0, ...];
VAR
current: 0 .. N+1;
alarm: O .. N+1;

input_funO: boolean;
input_funl: boolean;

inputO: ...;

inputl: ...;

f1: Fil(current, alarm, priority, ...);

£f2: F2(current, alarm, priority, ...);
TRANS -- stophold as trap state.

current = 1 -> next(current) = 1

-- higher priorities will get to that state, or ok/fail.
TRANS
priority[current] < priority[alarm] ->
(next (current) = alarm | next(current) = 1)
-- lower priorities will keep in the same state, or ok/fail.
TRANS
priority[current] >= priorityl[alarm] ->
(next (current) = current | next(current) = 0
| next(current) = 1)

MODULE F1(...)

The current variable represents the current mode. The value “0” represents
the nominal mode, the value “1” represents the stophold mode, while the other
values represent the user-defined modes.

If an alarm is received and the corresponding mode has a priority higher than
the current one, the next mode will be set to the new one or to nominal or to
failure. If the alarm corresponds to a mode with lower priority is discarded and
the next mode is determined by the module implementing the recovery procedure
of the current mode.

Finally, each recovery procedure is translated into an SMV module. The
transition follows the definition of transition in a straightforward way.

Running Example In the development process, tuning the priorities might
not be trivial and could lead to inconsistent definitions. One of the possible
errors could be that we set up a priority that never triggers because there is a
higher priority failure mode that implies the other property. We can leverage
model checking to automate this property: “There is no higher priority failure
condition that implies a lower priority failure condition”. We might have:

Property 1: H[0s,10s] A -main A H[0s, 20s] A —secondary
Property 2: secondary_supplyS[10, 10]-main_power_supply

If we mistakenly give more priority to Property 2, we find the following warning:

-- specification

(((secondary_power_supply) S [10,10] (!main_power_supply))
-> (H [0,10] !main_power_supply &

H [0,20] !secondary_power_supply)) is true

Which, in the development process would mean that we can either strengthen
the property, remove it, or swap priorities.

5 Heat Pump Controller Case Study

5.1 Description of the System

Innova Engineering is setting up a structured development process for the control
software of Innova heat pump systems for heating and air conditioning. As part
of this process, the integration of FDIR represents an important asset for reliable
control. To avoid entering in proprietary designs of heat pumps, we here use an
example that is representative of the most recent products of the company. The
example is a cooling/heating system powered by pumps with an exchanger in
between, and multiple sensors to monitor the physical dynamics. In order to
understand the monitoring properties and recovery procedures, we give a brief
introduction to the system.

Fig. 77 gives a pictorial view of the case study with detail of the various com-
ponents’ inputs and outputs. The circuit has two pumps, the master pump which
works on nominal conditions, and the redundancy pump, for faulty situations.
These pumps make the fluid flow into the cooling/heating module (exchanger).
The exchanger modifies the liquid’s temperature depending on the requested
power, its density and a few more variables. The fluid with the desired temper-
ature will be directed to the hot/cold load, and if no problems were detected,
start the cycle again. Later, it will be directed in-between components through
pipes with flow sensors, measuring the volume of liquid we transfer per second.

5.2 FDIR Specification

All the information about failure modes is listed in Table 7?7, apart from the
group thresholds that are omitted for lack of space (note that empty isolation
conditions are interpreted as always true). We briefly discuss here some of the
most important monitoring conditions and related recovery:

— The sum over differences of pressures is not 0, which could mean that the
pump is blocked, or there is a leakage in the pipe system. In this particular
example, we experience a rise in pressure (for simplicity, we assume that the
pressure drop on the cold load is 0):

Hardware Controller User

expected_flow (on each sensor):

@® — flow_sensors. calculated from model

ViSible by Controller ﬂﬂd user expected_pressure_drop: calculated from model

Cooling/Heating System expected_flow (one per sensor)
fan heat pump power_temp expected_pressure_drop
FDIR
delta_temp
i monitors |pump_broken
input_temp punp_recover
fan_broken
hot load Controll
or ontroller smaoth_pump_switch fan_inactive
cold load pump_inactive
TN, switch_off
{ V- output_temp fan_stuck
IS
-
e \
L fety | water_flow
PN req_speed_rpn

power

req_delta_temp

pressure

available_punps

Fig. 7. Heat Pump case study architecture

e The pump: we will model the pressure rise with:
AP [kPa] = 5.62 x 107° x pump_speed [rpm]? — 4.46 x flow [m® /h]?

2
e The exchanger: AP = (HI?—W) , where K, is a coefficient that takes into

account exchanger geometry and fluid type.
To check this condition, we define the following formula:

H[Os, 45s] (pressure_diff_pump()+pressure_diff_exchanger())!=0

where the functions are provided by the controller interface to compute the
above expressions. Furthermore, to isolate the problem we could check, for
every flow sensor if flow_sensor; is far from the expected, and handle the
possible leakage. Otherwise, we can assume that there is a blockage in the
pump, and try to unstuck it by repeatedly powering on-off.

— The average flow is too far from the expected value. Possible causes are:
the primary pipe has experienced a decrease in flow because of a pump
obstruction; or, the channel after the exchanger is not letting the fluid keep
the natural flow. One full monitoring property could be the following:

H [0s, 30s] abs(expected_avgflow()—avgflow)>2 &
0[0s, 30s] abs(expected_flow(2) — flow_sensor_2) > 1

— The redundancy pump has to work since the primary pump broke, at least
in a span of 10 seconds.

available_pumps[1l] S [0Os, 10s] !available_pumps [0]

fault detection condition

isolation condition

recovery procedure

H[0s, 38s] ! available_pumps[0]

H[0s, 10s] !available_pumps[1]

init fail [switchoff();]

init wait_recover [fix-pump(0);]
state wait._recover:

transitions:

timeout=2s -> ok

available_pumps[1]
S[0s, 10s] !available_pumps [0]

300

init fail [switch-off(); 1]

H[Os, 46s] (pressure.diff pump +
pressure_diff_exchanger) != 0

300

init power_off
fix_timeout: timeout=2m on {power_off,
power_on; }
state power_off:
transitions:
flow_sensor 0 < 1 -> ok
fix_timeout -> fail
[timeout=15s \off_pump();] -> power_on
state power._on:
transitions:
flow_sensor 0 < 1 -> ok
fix_timeout -> fail
[timeout=15s \on-pump();] -> power_off

H[Oms, 150ms] (temp_diff
< 0 <= hot.load)

220

init ok [req-temp.diff := 0;]

H[0s, 30s]
abs (expected_avgflow()
- avgflow()) > 2

0[0s, 30s] abs(expected.-flow(2)
- flow_sensor.2) > 1

init pump_stucked [unstuck_pump(Q);]
state pump_stucked:

transitions:

[abs(expected-avgflow() - avgflow()) < 1 \
restart_flow(); 1 -> ok

[timeout=1m switch_off();] -> fail

0[0s, 30s] abs(expected_flow(1)
- flow_sensor_1) > 2

init fail [switchoff();]

0[0s, 30s]
abs (expected_flow(0)
- flow._sensor.0) > 1

180

init fixing-exchanger [restart.exchaner();]
state fixing exchanger:

transitions:

exch.power() > 2.3 -> ok

timeout=2m -> fail

H[Oms, 350ms]
calculate_fluid (fluid)
= fluid_type_table(fluid)

250

init switch_fluid [smooth_switch(fluid);]
state switch-fluid:
timeout=3s -> fail
calculate_fluid(fluid)
= fluid-type-table(fluid) -> ok

H [0s, 2m] req-temp.diff -
temp.diff < temp.diff_thresh

H[Om, 2m] (fan_req.speed > 0
& fan_speed > 0
& abs(fan_req.-speed - fan_speed)
> fan_thresh)

init recover_fan [
initial.req := fan_req.speed;
fan.req-speed := 0;
1
state recover_fan:
[timeout 1m \fan req-speed
+= fan_rate] -> recover_fan
abs(fan_req.speed - fan.speed) < 3 -> ok

H[Om, 4m] (fan_speed = 0
& fan_req.speed != 0)

160

init fail [switch-off(); 1]

H[Om, 2m] power_temp.req >
MAX_power

200

init ok [power_temp.req := MAX_power;]

Ta

ble 1. FDIR specification of the case study

Finally, note the combination of detection and isolation conditions with pri-
orities. For example, in the case of the flow sensors, we detect a fault when the
average flow diff has been greater than 2 for the last 30s. We then identify which
sensor has a problem by checking each sensor in the last 30s, but since are flow
sensors in different parts of the circuits, they are given different priorities, based

on their criticality.

5.3 Verification Results

The specification table described in the previous section is used to generate the
code of the heat pump controller. The code of the hierarchical FSM combining

the FDIR modes and recovery procedures results in C file with 2277 lines of
code, without counting the monitors and the controller interface.

In order to check the correctness of this FDIR, we used nuXmv for model
checking the generated SMV model, and various tests to verify the generated
code. These two verifying techniques are complementary, as the model checking
of SMV formally validates that what we wrote in the table specification is what
we had in mind, while the testing verifies the actual program execution.

For testing, we set up a simple testing framework where input values as
expected output are specified in csv files, with the possibility to inject faults.
Tests in C are automatically generated to execute the tests.

We tested each FDIR mode in the presence of no other alarm to verify the
correct flow of the state machine in each FDIR mode in isolation. Complemen-
tary, we also wrote tests, where higher and lower priority alarms are triggered,
and we ignore/react to these information. Since we implemented 12 different
properties, we covered a total of 36 different scenarios.

As for model checking, we checked 1) each failure mode transition 2) mode
transitions with alarms of different priorities, 3) absence of infinite loops, and 4)
reachability of group thresholds.

These kinds of checks are particularly useful for early verification and valida-
tion, to find issues in the table specification. An example of issues in an earlier
version of the table was found checking a recovery procedure in isolation. The
property was G(alarm = 4) — F(current = 0]current = 1) . A counterex-
ample showed that there was an infinite loop moving between power_off and
power_on. These problems are solved by introduction timeout groups. We also
noticed possible infinite loops when we have a self loop with a condition, and the
timeout that keeps track of this loop is in the lowest priority (since the higher
priority may always be true, and always keep looping).

6 Conclusions and Future Works

In this paper, we presented a specification-driven approach to the automatic
generation of embedded code for fault detection, isolation, and recovery. The
proposed approach translates high-level formal specification of monitoring con-
ditions and recovery procedures into platform-specific embedded code. Addi-
tionally, model checking techniques provide a means to validate and verify the
specified FDIR logic, strengthening its reliability. We demonstrated the approach
through a case study in the energy domain.

While the proposed approach significantly reduces manual coding effort by
automating the generation of FDIR code from high-level specifications, it still
requires to define fault detection conditions and recovery logic in formal nota-
tions. Future work will aim to further streamline this process through increased
automation. Other directions for future work include optimizing the generated
code to meet requirements on timing and memory bounds of specific target plat-
forms, and connecting the proposed methodology to preliminary hazard analysis
phases and to system-level analysis of failure modes and effects.

