
OCRA: Othello Contracts Refinement Analysis
Version 2.1.0

Alessandro Cimatti, Michele Dorigatti, Stefano Tonetta∗

Abstract

Contract-based design enriches a component model with properties structured in pairs of assumptions and guar-
antees. These properties are expressed in term of the variables at the interface of the components, and specify how a
component interacts with its environment: the assumption is a property that must be satisfied by the environment of
the component, while the guarantee is a property that the component must satisfy in response. Contract-based design
has been proposed in many methodologies for taming the complexity of embedded systems. In fact, contract-based
design enables stepwise refinement, compositional verification, and reuse of components.

OCRA (Othello Contracts Refinement Analysis) is a tool that provides means for checking the refinement of
contracts specified in a linear-time temporal logic. The specification language allows to express discrete as well as
metric real-time constraints. The underlying reasoning engine allows checking if the contract refinement is correct.
OCRA has been used in different projects and integrated in tools.

This document provides a manual on how to use OCRA, specifically its input language and its commands.

Contents
1 Introduction 4

2 Input language 4
2.1 Components . 4
2.2 Time domains . 5

2.2.1 Hybrid time domain limitations . 5
2.2.2 Discrete time domain limitations . 6
2.2.3 Timed domain limitations . 6

2.3 Interface . 6
2.3.1 Ports . 6
2.3.2 Parameters . 6
2.3.3 Operations . 7
2.3.4 Defines . 7
2.3.5 Contracts . 7
2.3.6 Assertion . 7

2.4 Refinement . 7
2.4.1 Refinement language . 7
2.4.2 Subcomponents . 7
2.4.3 Connections . 8
2.4.4 Constraints . 8
2.4.5 Behaviour . 9
2.4.6 Assertion . 10
2.4.7 Validation Properties . 11

∗For a bug report, a feature request or other suggestions, please send email to ocra@fbk.eu.

1

ocra@fbk.eu

2.4.8 Asynchronous vs. Synchronous Refinement . 11
2.4.9 Contracts refinement . 11

2.5 Constraint language . 12

3 Verification of Contracts Refinement 14

4 Integration with NUXMV and HYCOMP for Compositional Modeling and Verification 15
4.1 Notes regarding the integration with HYCOMP . 17

5 Advanced features 17
5.1 Verification of Receptiveness . 17
5.2 Contract-based Safety Analysis . 17

6 Parametrized Ocra 18
6.1 Architectural parameters . 18

6.1.1 Definition . 18
6.1.2 Instantiating architectural parameters . 18
6.1.3 Parameter assumptions . 19

6.2 Parametrized Language . 20
6.2.1 Iterators . 20
6.2.2 Guard . 20
6.2.3 Big or . 20
6.2.4 Big and . 21
6.2.5 Count iterator . 21
6.2.6 Parametric Ports . 21
6.2.7 Parametric Subcomponent . 21
6.2.8 Parametric connection . 22
6.2.9 Parametric Contracts . 22
6.2.10 Parametric Contract Refinement . 22

7 Interactive Commands of OCRA 23

8 OCRA Command Line Options 38

A Concrete syntax 41
A.1 Othello System Specification . 41
A.2 Othello Port Types . 42

A.2.1 Boolean . 42
A.2.2 Enumeration Types . 42
A.2.3 Word . 42
A.2.4 Integer . 42
A.2.5 Real . 42
A.2.6 Clock . 43
A.2.7 Continuous . 43
A.2.8 Array . 43
A.2.9 Noncontinuous annotation . 43
A.2.10 Uninterpreted functions . 43

A.3 Othello constraints . 44

2

B Abstract syntax and semantics 45
B.1 Abstract syntax and semantics of HRELTL constraints . 45

B.1.1 Abstract syntax . 45
B.1.2 Semantics . 46
B.1.3 Examples . 47

B.2 Abstract syntax and semantics of the system specification . 47

C Patterns 48

3

1 Introduction
OCRA is a tool that provides automated support for contract-based design with temporal logics. OCRA relies on the
contract framework originally proposed in [CT12, CT], where assumptions and guarantees are specified as temporal
formulas.

The main functionality of OCRA is the verification of the contract refinement. OCRA checks if a given contract
refinement is correct, generating the corresponding set of proof obligations and checking their validity. OCRA takes
as input a textual description of the components interfaces and their decomposition into sub-components, the compo-
nents’ contracts and their refinement with the contracts of the sub-components. The OCRA input file, also called OSS
(OCRA System Specification), describes a tree of components (given by the decomposition into sub-components),
which represents the system architecture.

The contracts are specified in Othello [CRST12], a human-readable language which can be mapped to temporal
formulas in the HRELTL [CRT09], and thus represent sets of hybrid traces. The contract refinement is however
independent from the nature of the traces and OCRA provides an option to interpret the contracts over discrete-time
traces restricting the input to forbid continuous ports and allow LTL [Pnu77] contracts only.

In order to prove the validity of the proof obligations deriving from contract refinement, OCRA interacts with
NuSMV3 [NuS], a framework that includes nuXmv [nuX], HyCOMP [HyC], and xSAP [XSA]. NUSMV3 provides
the functionality to either prove that the formulas are valid, or to find counterexamples, which can be inspected by
the user in order to find the bugs in the contract refinement. When the contracts are written in the standard discrete-
time LTL, to prove or disprove the validity of the proof obligations the BDD-based engine is used. In the general
case of HRELTL, reasoning relies on Satisfiability Modulo Theory (SMT). Since logical entailment for HRELTL is
undecidable, bounded model checking techniques are used to find counterexamples to the contract refinement [CRT09,
CT12].

OCRA has been developed within the European project SafeCer [Saf], focusing on the compositional certification
of embedded systems. The tool is publicly available [OCR].

2 Input language1

2.1 Components
The main input of OCRA is a textual specification of a system architecture and the related contract refinement. The
format of this input is the OCRA System Specification (OSS), which contains the specification of components, their
ports and contracts, and their decomposition. Each component specification starts with the keyword COMPONENT and
ends with the following COMPONENT or with the end of the input. For example, the OSS shown in Figure 1 contains
three component specifications.

Each component specification contains a name, an interface part (introduced with the INTERFACE), and option-
ally a refinement part (introduced with the keyword REFINEMENT). A component without refinement is called a leaf
component. In the interface part, the ports, the parameters, and the contracts are declared. In the refinement part, the
subcomponents are declared and the connections and constraints among the ports of the component and subcompo-
nents are specified. Finally, still in the refinement part, the refinement of the component contracts is also specified. In
the following section, we detail the syntax of these elements.

One (and only one) of the component specifications is tagged with the keyword system. We refer to this compo-
nent as the system component. The system architecture is a tree of component instances where the root is an instance
of the system component and each node is either an instance of a leaf component and has no children or has as children
the instances specified as subcomponents in the refinement. The system architecture of the example in Figure 1 has
three nodes, if simple_instance is the name of the root, then simple_instance.a and then simple_instance

.b are the leaves.

1The OCRA data types and operators are based on the NUXMV input language. See https://es.fbk.eu/tools/nuxmv/downloads/
nuxmv-user-manual.pdf for a detailed description.

4

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

COMPONENT example1 system
INTERFACE
INPUT PORT in_data: boolean;
OUTPUT PORT out_data: boolean;

CONTRACT reaction
assume: in the future in_data;
guarantee: always (in_data implies in the future out_data);

REFINEMENT
SUB a: A;
SUB b: B;

CONNECTION a.in_data := in_data;
CONNECTION b.in_data := a.out_data;
CONNECTION out_data:= b.out_data;

CONTRACT reaction REFINEDBY a.reaction, b.pass;

COMPONENT A
INTERFACE
INPUT PORT in_data: boolean;
OUTPUT PORT out_data: boolean;

CONTRACT reaction
assume: in the future in_data;
guarantee: always (in_data implies in the future out_data);

COMPONENT B
INTERFACE
INPUT PORT in_data: boolean;
OUTPUT PORT out_data: boolean;

CONTRACT pass
assume: true;
guarantee: always (in_data implies out_data);

Figure 1: Simple OSS example

2.2 Time domains
The semantics of components is defined in terms of traces (see Section B for a formal definition). The semantic of the
traces depends on the time domain. 3 different time domains are supported:

• Discrete time: The model of time is the set of natural numbers

• Hybrid time: The model of time combines discrete changes with continuous evolution of time (the time
model in this case is the subset of N×R containing 〈0, 0〉 and such that for all 〈i, t〉, 〈i′, t′〉, if i < i′ then t ≤ t′).

• Timed: The model of time is the same as the hybrid time, the only difference is that timed restricts the hybrid
variable to have type clock and allows discrete variables to change during timed transitions if annotated with
noncontinuous.

The default time domain is hybrid.

2.2.1 Hybrid time domain limitations

In the hybrid-time case the following commands are not supported:

• ocra compute fault tree

• ocra generate miter

• ocra check receptiveness

5

• ocra check ltlspec on trace

• ocra tighten contract refinement

2.2.2 Discrete time domain limitations

In the discrete-time case, the language is syntactically restricted (see Section 2.3.1 and 2.5). The user can require to
interpret the model with discrete time by writing at the beginning of the model:
@requires discrete-time

It is also possible to enable the discrete time interpretation by using the command line option -ocra-discrete-time
(see Section 8)

2.2.3 Timed domain limitations

In the timed-domain case, the language is syntactically restricted (see Section 2.3.1 and 2.5). The user can require to
interpret the model with timed domain by writing at the beginning of the model:
@requires timed-domain

It is also possible to enable the timed domain interpretation by using the command line option -ocra-timed-domain
(see Section 8) At the moment timed domain is not supported by the following commands:

• ocra compute fault tree

• ocra generate miter

• ocra check receptiveness

• ocra check ltlspec on trace

• ocra tighten contract refinement

2.3 Interface
2.3.1 Ports

The component interface contains a (possibly empty) set of port declarations. Each port is declared with the key-
word PORT, preceded by the direction (INPUT/OUTPUT) and followed by the name and the type. Allowed types
are boolean, integer, real, event, continuous, clock, signed word, unsigned word, range of
integers, list of integers or symbolic constants. In the discrete-time case, continuous and clock types cannot be
used. In the timed case continuous type cannot be used.

2.3.2 Parameters

A component interface may contain also parameters. These are introduced with the PARAMETER. The type of param-
eters can be boolean, integer, real, signed word, unsigned word, range of integers, list of integers or
symbolic constants and uninterpreted functions. Parameters are like input port that do not change value along time.
The parameters of subcomponents can be set by the connection (see the example in Figure 3). Therefore the same
component can be instantiated with different parameters. Moreover, the value may depend on the parameters of the
father component.

Parameters can be declared with the uninterpreted function type. The following code declares a function with two
integer arguments and an integer return value:
PARAMETER f : integer * integer -> integer;

In contracts function will be referenced through calls, with the standard syntax:
guarantee : always f(0, 0) > 0;

6

2.3.3 Operations

A special kind of port is called operation. A component can provide an operation or require it from another one.
Operations can be seen as a collection of ports: if an operation is declared in a component in the way shown below,
PROVIDED OPERATION PORT P (a : boolean, b : real) : boolean;

several ports are implicit declared and can be referenced:
INPUT P_call : event -- the event corresponding to the call of the operation
INPUT P_a_param : boolean -- the first parameter
INPUT P_b_param : real -- the second parameter
OUTPUT P_ret : event -- the event corresponding to the operation returning
OUTPUT P_ret_value : boolean -- the return value

Therefore, the form of an operation is much like a function in a traditional programming language. However, there
is no semantic constraints on the implicit ports. A specific semantics should be enforce by means of constraints.

If no return value port is declared if the return type of the operation is void. As for the other ports, if a component
is refined in subcomponents, it is possible to define the connections between the operations.

2.3.4 Defines

A define is a kind of macro. Every time a define is met in expressions, it is substituted by the expression associated
with this define. Therefore, the type of a define is the type of the associated expression in the current context. Define
expressions may contain next operators; normal rules apply: no nested next operators.

A define is not a port or a parameter, so it cannot be used in the left hand side of a CONNECTION.

2.3.5 Contracts

A component interface may contain a set of contracts. Each contract is introduced with the keyword CONTRACT,
followed by the name of the contract and two constraints (see also Section 2.5) representing an assumption and a
guarantee. The assumption is introduced with the keyword assume and represents a property that must be satisfied
by the environment of the component. The guarantee is introduced with the keyword guarantee and represents a
property that must be satisfied by the implementation of the component provided that the assumption holds.

2.3.6 Assertion

A component interface may contain a set of assertions. This specifications are like contract assumptions and guaran-
tees. In order to create a specification we use the keywords ASSERTION NAME specification name := constraint.

2.4 Refinement
2.4.1 Refinement language

It is possible to declare variables local to the refinement of a component, not visible from its interface and consequently
from the father components. They comes in handy when modelling CONSTRAINTs and refinement behaviour. These
symbols are not ports and do not have a direction (input or output). Also they cannot have type event.

The syntax to declare them is VAR followed by an identifier and the type. For an example see Figure 4 below.

2.4.2 Subcomponents

The component refinement contains a set of subcomponent declarations. Each subcomponent is introduced with the
keyword SUB followed by the name and the type. The type must be the name of another component. However, the
type cannot be the refined component or any ancestor in the tree structure of the system architecture.

7

COMPONENT example2 system
INTERFACE
INPUT PORT in_data: real;
OUTPUT PORT positive: boolean;

CONTRACT positive
assume: always (in_data>=0);
guarantee: always positive;

REFINEMENT
SUB a: A;
SUB b: B;

CONNECTION b.in_data := in_data + a.out_data;
CONNECTION positive := b.out_data>0;

CONTRACT positive REFINEDBY a.positive, b.past;

COMPONENT A
INTERFACE
OUTPUT PORT out_data: real;

CONTRACT positive
assume: true;
guarantee: always (out_data>0);

COMPONENT B
INTERFACE
INPUT PORT in_data: real;
OUTPUT PORT out_data: real;

CONTRACT past
assume: true;
guarantee: always (out_data<=0 implies in the past in_data<=0);

Figure 2: Example with arithmetic expressions in the connections

2.4.3 Connections

The component refinement contains a (possibly empty) set of connections. Each connection connects the output of the
component or the input of the subcomponents to an expression over the inputs of the component and the outputs of
the subcomponents. The connection is introduced with the keyword CONNECTION2 followed by the connected port
and the expression. The ports of subcomponents are referred to with the the dot notation (name of the subcomponent
followed by "." followed by the name of the port). The type of the port and the expression must be the same. So, if
the connected port is real, then also the expression must be a real expression (see the example in Figure 2).

Remark 1 The presence of Boolean or arithmetic connectors in the connection may be seen as not a principled design
choice, because it hides a component that implements such connector. OCRA supports it for flexibility but the user
should consider the alternative model where additional components are introduced and all connections are atomic,
just connecting one port to another port.

Remark 2 In a principled design, every output port of a refined component and every input port of its subcomponents
should be connected by a connection. If not, such port is called dangling. OCRA warns the user about the presence of
such ports but they are supported. The semantics of dangling ports is that their value is non-deterministically chosen.
Note that the same behavior can be obtained by adding a subcomponent that generates such non-deterministic value.

2.4.4 Constraints

The component refinement contains a (possibly empty) set of temporal constraints (see also Section 2.5) on the ports of
the component and the ports of the subcomponents. Such constraints are introduced with the keyword CONSTRAINT.

2In the earlier version of the language, connections were named DEFINE. This is no more supported.

8

COMPONENT example3 system
INTERFACE
INPUT PORT x: real;
OUTPUT PORT alarm: event;
PARAMETER min_period: real;
PARAMETER threshold: real;
CONTRACT alarm
assume: always (change(x) implies then time_until(change(x))>min_period);
guarantee: always ((x<=threshold) implies time_until(alarm)<=10);

REFINEMENT
SUB d: Device;
SUB m: Monitor;
CONNECTION d.x := x;
CONNECTION alarm := m.out_alarm;
CONNECTION m.period := (min_period<=2)?min_period:2;
CONNECTION d.threshold := threshold;
CONSTRAINT always (m.request implies time_until(d.request)<=3);
CONSTRAINT always (d.alarm implies time_until(m.in_alarm)<=3);
CONTRACT alarm REFINEDBY d.alarm, m.alarm, m.request;
CONSISTENCY NAME c1 := example3.alarm.ASSUMPTION, d.alarm.ASSUMPTION, m.request.ASSUMPTION;
POSSIBILITY NAME p1 := example3.alarm.GUARANTEE GIVEN d.alarm.ASSUMPTION, m.request.ASSUMPTION;
ENTAILMENT NAME e1 := m.request.GUARANTEE BY m.request.ASSUMPTION;

COMPONENT Device
INTERFACE
INPUT PORT x: real;
INPUT PORT request: event;
OUTPUT PORT alarm: event;
PARAMETER threshold: real;
CONTRACT alarm
assume: true;
guarantee: always ((request and x<=threshold) implies time_until(alarm)<=1);

COMPONENT Monitor
INTERFACE
INPUT PORT alarm: event;
INPUT PORT in_alarm: event;
OUTPUT PORT request: event;
OUTPUT PORT out_alarm: event;
PARAMETER period: real;
CONTRACT request
assume: true;
guarantee: (time_until(request)<=period) and

(always (request implies then time_until(request)<=period));
CONTRACT alarm
assume: true;
guarantee: always (in_alarm implies time_until(out_alarm)<=1);

Figure 3: More complex OSS example

Constraints may be useful to model special kind of connections, such lossy channels or delays (see the example in
Figure 3).

Remark 3 Also in this case, the use of constraint may be avoided by introducing a component implementing the
special connection (see also Remarks 1 and 2).

2.4.5 Behaviour

OCRA provides a set of keywords to allow the modeller to specify a (in)finite state machine to control the refinement
of a component. They respond to the same purpose of the CONSTRAINTSs, but are more expressive. Their argument
is not an OTHELLO formula but a subset of them: an SMV expression. In particular SMV expressions lacks tem-
poral operators (See https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf for a
detailed description). See figure 4 for an example.

• INIT: it determines the set of initial states. next is not allowed.

• TRANS: it declares the transition relation.

9

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

• INVAR: specifies the set of invariant states. next is not allowed.

• FAIRNESS: a fairness constraint restricts the attention only to fair execution paths. When evaluating specifica-
tions, OCRA considers path quantifiers to apply only to fair paths. next is not allowed.

COMPONENT example4 system
INTERFACE
INPUT PORT x: real;
OUTPUT PORT alarm: event;
PARAMETER min_period: real;
PARAMETER threshold: real;
CONTRACT alarm
assume: always (change(x) implies then time_until(change(x))>min_period);
guarantee: always ((x<=threshold) implies time_until(alarm)<=10);

REFINEMENT
VAR local : boolean;
SUB d: Device;
SUB m: Monitor;
CONNECTION d.x := x;
CONNECTION alarm := m.out_alarm;
CONNECTION m.period := min_period;
CONNECTION d.threshold := threshold;

TRANS m.request implies next(d.request)
TRANS d.alarm implies next(d.in_alarm)
INVAR min_period > 2 implies m.period = 2

FAIRNESS not alarm;

CONTRACT alarm REFINEDBY d.alarm, m.alarm, m.request;

COMPONENT Device
INTERFACE
INPUT PORT x: real;
INPUT PORT request: event;
OUTPUT PORT alarm: event;
PARAMETER threshold: real;
CONTRACT alarm
assume: true;
guarantee: always ((request and x<=threshold) implies time_until(alarm)<=1);

COMPONENT Monitor
INTERFACE
INPUT PORT in_alarm: event;
OUTPUT PORT request: event;
OUTPUT PORT out_alarm: event;
PARAMETER period: real;
CONTRACT request
assume: true;
guarantee: (time_until(request)<=period) and

(always (request implies then time_until(request)<=period));
CONTRACT alarm
assume: true;
guarantee: always (in_alarm implies time_until(out_alarm)<=1);

Figure 4: The example in figure 3 rewritten with behavioural statements

Remark 4 The use of behavioural formulas may be avoided by introducing a component implementing the special
connections (see also Remarks 1, 2 and 3).

2.4.6 Assertion

The behavior is the same of the interface part, but in the refinement part the assertions can refer to elements that are
contained in a subcomponent.

10

2.4.7 Validation Properties

The component refinement contains a (possibly empty) set of validation properties on a contract refinement. There are
three types of validation properties that can be defined: consistency, possibility, and entailment. In their definitions,
formula ids are used to make reference to assumption, guarantee, and norm guarantee 3 of the contracts of components.
A formula id is made up of a component name, a contract name and one of the keyword: ASSUMPTION, GUARANTEE,
or NORM GUARANTEE. These three parts are separated using the dot notation (see below an example).

Let us now explain the three type of validation properties:

• Consistency: this type of validation property aims at formally verifying the absence of logical contradictions of
a given subset of properties (assumption, guarantee, and norm guarantee of the contracts on a refined component
and its subcomponents). It is possible to define a consistency property in the following form:
CONSISTENCY NAME name := prop0, . . . , propn, where prop0, . . . , propn is a list of formula ids.

• Possibility: this kind of validation property allows to verify whether a property is consistent with a set of
other properties specified in the contracts. It is possible to define a possibility property in the following form:
POSSIBILITY NAME name := prop0 GIVEN prop1, . . . , propn, where prop0 can be a formula or a formula
id, and prop1, . . . , propn is a list of formula ids.

• Entailment: this type of validation property aims at verifying whether an expected property is implied by a
set of other properties specified in the contracts. It is possible to define a possibility property in the form:
ENTAILMENT NAME name := prop0 BY prop1, . . . , propn, where prop0 can be a formula or a formula id, and
prop1, . . . , propn is a list of formula ids.

As we mentioned above, a formula id is made up of a component name, a contract name and one of the keyword:
ASSUMPTION, GUARANTEE, or NORM GUARANTEE. These three parts are separated using the dot notation. For
example, the formula id corresponding to the assumption of the contract alarm on component example3 in
Figure 3 is denoted as: example3.alarm.ASSUMPTION. We remark that formula ids used in the definition of any
validation properties can only make reference to contracts on the component where is defined the validation property
and its subcomponents.

2.4.8 Asynchronous vs. Synchronous Refinement

The semantics of the composition of subcomponents is synchronous. This means that subcomponents progress si-
multaneously. At every discrete step or time evolution, every component behaves as specified by the contracts. It is
possible to specify an asynchronous composition by using the keyword ASYNC in front of the keyword REFINEMENT.
In this case, at every discrete step, each component either behaves as specified by the contracts or stutters. The rela-
tionship between the stuttering of one component and the other events must be specified with a CONSTRAINT using
the implicit event stutter. For example, a constraint may force a component to stutter when the other component it
is performing an event. See the examples in the distribution of the tool. By default, no fairness is introduced to avoid
endless stuttering of a component. By setting the option ocra async fairness the tool will introduce such constraint.

2.4.9 Contracts refinement

In the component refinement, each contract present in the component interface should be refined by some contracts
of the subcomponents. This relationship is introduced with the keyword REFINEDBY preceded by the name of the
refined contract followed by a list of contracts of the subcomponents. These are referred to with the the dot notation
(name of the subcomponent followed by "." followed by the name of the contract).

3Norm guarantee is defined as A→ G, where A is the assumption and G is the guarantee of a given contract.

11

2.5 Constraint language
OCRA input language uses OTHELLO [CRST12] to specify contracts. In the discrete-time case, it coincides with LTL
and is interpreted over discrete traces.

The relevant syntax of OTHELLO has been summarized in Table ?? together with the corresponding mathematical
formulation in HRELTL (see Section B for a formal definition of syntax and semantics).

In case of discrete time, der, time_until, and time_since are not allowed.
In case of timed domain der is not allowed.

12

constraint := atom | φ := a |
not constraint | ¬φ |
constraint and constraint | φ ∧ φ |
constraint or constraint | φ ∨ φ |
constraint implies constraint | φ→ φ |
always constraint | Gφ |
never constraint | G¬φ |
in the future constraint | Fφ |
constraint until constraint; φ Uφ;
then constraint | Xφ |
historically constraint | Hφ |
in the past constraint | Pφ |
constraint since constraint; φ Sφ;
term at next constraint; t @Fφ;
term at last constraint; t @Pφ;

atom := true | a := > |
false | ⊥ |
term relation term | t ./ t |
time until(term) relation term | B./tt |
time since(term) relation term | C./tt |
change(term)| v′ 6= v |
fall(boolean term)| φ ∧ ¬Xφ |
rise(boolean term)| ¬φ ∧Xφ |
boolean term ; t;

term := port | t := v |
constant | c |
term function term | t ? t |
der(port) | v̇ |
next(port) ; v′;

Basic formulas are defined with linear arithmetic predicates over the variables or their derivatives. For exam-
ples, x-e<limit and der(x)<0 are well-defined formulas. Predicates can be combined with Boolean and temporal
operators. For example, x-e<limit and der(x)<0 and always x-e<limit are well-defined formulas.

In temporal logic, a formula without temporal operators is interpreted in the initial state. Thus, x=0 characterizes
all traces that start with a state evaluating x to 0, and then x can evolve arbitrarily. Instead, to express that a predicates
holds along the whole evolution, one may use the always operator as in always x=0.

Another classical example of properties is the response to a certain event. The formula always (p implies in
the future q) defines the set of traces where every occurrence of p is followed by an occurrence of q. Note that q

may happen with a certain delay (although there is no bound on such delay). The formula always (p implies q)

instead forces q to happen at the instant of p.
The above formulas do not constrain the time model of the traces. Therefore, they can be interpreted either

as discrete traces or as hybrid traces. However, the logic is suitable to characterize specific sets of hybrid traces,
constraining when there should be discrete events and how the continuous variables should evolve along continuous
evolutions.

The der(.) operator is used to specify constraints on the derivative of the continuous evolution of continuous
variables. For example, the following OTHELLO constraint:
always (train.location<=target implies der(train.location)>=0)

characterizes the set of hybrid traces where in all states, if the train has not yet reached the target location, its speed
(expressed as the derivative of the location) is greater than or equal to zero.

The next(.) operator is used to specify functional properties requiring discrete changes to variables. For example,
we can express the property that the warning variable will change value after the train’s speed passes the limit with the
following constraint:
always (speed>limit implies

in the future next(warning)!=warning)

The expression change(x) can be used instead of next(x)!=x.
In order to constrain the delay between two events, we use the time_until(.) and time_since(.) operators,

which denote respectively the time that will elapse until the next occurrence of an event and the time that elapsed since
the last occurrence of an event. For example, the formula always (p implies time_until(q)<max_delay)
defines the set of hybrid traces where p is always followed by q in less than max_delay time units.

The operator . at next . has a similar but more general purpose. It denotes the value of the left expression,
known as the sample, at the next state (excluding the current one) in which the right expression, known as the trigger,
will be true. For example, the formula always (p implies (((time at next q)- time)< max_delay)) is
the discrete time equivalent of the previous example, using an explicit user defined time variable. There is also an
. at last . operator, which denotes the value of the sample at the last state (excluding the current one) in which
the trigger was true (see [Ton17] for further details).

3 Verification of Contracts Refinement
The contract refinements specified in the OSS be seen as a set of proof claims that are resolved by the tool. The claim
say 1) that if the subcomponents satisfy their contracts, then also the composite component satisfies its contracts,
and 2) that if the subcomponents satisfy their contracts and the environment of the composite component satisfies the
related assumptions, then also the assumptions of each subcomponents are satisfied.

The OCRA command to check the refinement of contracts is ocra check refinement. See Section 7 for a
complete description of options. The command internally processes the input, generates the proof obligations corre-
sponding to the proof claims, and check their validity. It reports the results to standard output, detailing for each proof
claim if the claim is correct and if not, it produces a counterexample trace witnessing that the claim is wrong.

A typical usage of the tool is the following. First, the user writes the OSS in a textual file. The typical suffix used
for these files is .oss (for example example1.oss). Emacs users can use the OCRA mode for syntax highlighting
(see ocra-mode.el file provided with the tool distribution). Second, OCRA must be run in interactive mode with
the command ocra -int example1.oss. Before checking the refinement, the user may check the syntax of the

input by calling ocra check syntax. OCRA provides also a simple validation check that verifies if each constraint
in the contracts is satisfiable. This can be performed with the command ocra check consistency. Finally, after
syntax checking and validation, the user may run the actual verification with the command ocra check refinement.
The overall sequence therefore is:

$ ocra -int example1.oss
ocra > ocra_check_syntax
ocra > ocra_check_consistency
ocra > ocra_check_refinement

4 Integration with NUXMV and HYCOMP for Compositional Modeling and
Verification

OCRA is tightly integrated with the NUXMV and HYCOMP model checkers to model and verify behavioral models
that implement the OCRA components; NUXMV is used for discrete time models, while HYCOMP handles the hybrid
time ones. The behavior of components can therefore described in SMV (the input language of NUSMV and NUXMV)
or HyDI (the input language of HYCOMP, an extension of SMV). In SMV/HyDI the behavior is described by means of
logical formulas that describe the initial states and the state transitions. An SMV/HyDI specification can be organized
by modules, but the languages do not allow to have a component-based specification with a clear definition of the
component interfaces. In fact, OCRA can be used even without contracts just to specify SMV/HyDI in a component-
based fashion. Figure 5 shows in a nutshell three different scenario of modeling and verifying SMV/HyDI models: in
the first, scenario only the SMV/HyDI language and the NUXMV/HYCOMP model checkers are used; in the second
scenario, the system architecture is specified in OSS (even without contracts), the behavior of the leaf component
is specified in SMV/HyDI, OCRA generates the SMV/HyDI of the system composing the leaves according to the
architecture, and finally NUXMV/HYCOMP are used to verify the model as a whole; in the third scenario, contracts are
also specified in the OSS model and OCRA is used for a composition verification.

Figure 5: Three scenarios of usage of nuXmv and OCRA in a nutshell

In order to support this usage, several commands of OCRA take as input or return as output SMV/HyDI models.
These models represent an instantiation of the OCRA component in a free environment. They contain a module
corresponding to the OCRA component and a module main instantiating the component.

Going to the detailed syntax, other than being valid SMV/HyDI models4, to be used with OCRA, these models
need to follow the syntax described below. When starting to model the implementations of an OCRA specification, it
is possible to automatically generate the correct structure, using the command
ocra print implementation template. Figure 5 shows a simple OCRA component and the corresponding
SMV/HyDI template. Note that OCRA version 1.2.0 and earlier used a different (now deprecated) syntax. If needed,
it can be enabled with
set ocra old smv format. This works only for discrete time models.

General rules

• Types are slightly different in OCRA and SMV/HyDI so that the following correspondence must be followed:

– OCRA input data port of type X corresponds to SMV/HyDI variable of type X

– OCRA output data port of type X corresponds to SMV/HyDI variable of type X

– OCRA input event port corresponds to SMV/HyDI input variable of type boolean

– OCRA output event port corresponds to SMV/HyDI input variable of type boolean

– OCRA parameter of type X corresponds to SMV/HyDI frozen variable of type X

Note that the word ”input” has different meanings.

• Since in SMV/HyDI there is no distinction between input and output, we use the convention that inputs corre-
spond to variables declared outside the component module and passed to module through MODULE parameters,
while outputs correspond to some symbols declared inside the MODULE.

Main SMV module

• For each parameter, there must be a frozen variable (FROZENVAR). This has to be also an actual parameter to
the module instance.

• For each input port, there must be a state (VAR) or input variable (IVAR, if the port is an event). This has to be
an actual parameter to the module instance as well.

• For each output port, there must be a DEFINE. Its body must be a symbol with the same name in the module
“component name”

• There must be a single module instance, of type “component name”.

Component SMV module

• For each input port and parameter, there must be a parameter

• For each output port, there must be a symbol

Main HyDI module

• There must be a single module instance, of type “component name”.

Component HyDI module

• For each parameter, there must be a frozen variable (FROZENVAR).

• For each input and output port, there must be a state (VAR) or input variable (IVAR, if the port is an event).

4see the NUXMV and HYCOMP websites: https://es.fbk.eu/tools/nuxmv/, https://es.fbk.eu/tools/hycomp/

https://es.fbk.eu/tools/nuxmv/
https://es.fbk.eu/tools/hycomp/

COMPONENT Sensor system

INTERFACE

INPUT PORT ib : boolean;
INPUT PORT ie : event;
OUTPUT PORT ob : boolean;
OUTPUT PORT oe : event;
PARAMETER pb : boolean;

MODULE main
VAR

Sensor_inst : Sensor(pb, ie, ib);
VAR

ib : boolean;
IVAR

ie : boolean;
FROZENVAR

pb : boolean;
DEFINE

oe := Sensor_inst.oe;
ob := Sensor_inst.ob;

MODULE Sensor(pb, ie, ib)
IVAR

oe : boolean;
VAR

ob : boolean;

Figure 6: A simple OCRA component and corresponding SMV template

4.1 Notes regarding the integration with HYCOMP

Even if the HyDI language provides a way to compose several process in a network, in the context of the integration
with OCRA, each component is modelled as an HyDI model with a single process. The composition of the processes
is rather modelled in the OSS model. Therefore, it is an error to use synchronization keywords such as EVENT and
SYNC when modelling the implementation of an OCRA component.

5 Advanced features

5.1 Verification of Receptiveness
For compositionality of a component with its environment, it is necessary that the component does not block inputs
from the environment. Since we are in the contract-based framework, it is sufficient to consider only environments
satisfying the assumptions of the component contracts. This check is performed automatically by OCRA with the
command ocra check receptiveness. However, the command is limited to consider only assumptions that
predicate over the input ports.

5.2 Contract-based Safety Analysis
A specific safety analysis can be performed exploiting the contract-based design and identifying the component fail-
ures as the failure of its implementation in satisfying the contract. When the component is composite, its failure can
be caused by the failure of one or more subcomponents and/or the failure of the environment in satisfying the as-
sumption. This dependency can be automatically computed based on the contract refinement. The OCRA command
ocra compute fault tree produces a fault tree in which each intermediate event represents the failure of a
component or its environment and is linked to a Boolean combination of other nodes; the top-level event is the failure
of the system component, while the basic events are the failures of the leaf components and the failure of the system
environment (see [BCMT14] for more details).

COMPONENT Sensor system

INTERFACE

INPUT PORT ib : continuous;
INPUT PORT ie : event;
OUTPUT PORT ob : continuous;
OUTPUT PORT oe : event;
PARAMETER pb : boolean;

MODULE main
VAR

Sensor_inst : Sensor();

MODULE Sensor()
VAR

ib : continuous;
IVAR

ie : boolean;
FROZENVAR

pb : boolean;
IVAR

oe : boolean;
VAR

ob : continuous;

Figure 7: A simple OCRA component and corresponding HyDI template

6 Parametrized Ocra
OCRA provides the possibility to specify also parametrized architectures, where the number of components and their
interfaces are parametrized by some parameters. In particular, parameters can be used to specify the size of arrays (of
subcomponents or ports) or to express conditions on the presence of a component or port. Parameters used in this way
are called architectural parameters. OCRA models with this feature are called parametrized.

A parametrized OCRA model represents a set of possible architectures, one for each evaluation of the architec-
tural parameters. It is possible to instantiate a parametrized model using a specific assignment to its architectural
parameteres using the command ocra_instantiate_parametric_arch. The assignments can be specified by the
command or directly inside the model using connections. It is possible to perform the verification of the contract
refinement of a parametrized model using the command ocra_check_param_refinement. Using this command it
is possible to identify which assignments to the architectural parameters are correct.

6.1 Architectural parameters
6.1.1 Definition

Architectural parameters are defined as PARAMETER and can be of type integer, numerical range or boolean.
Parameter are recognized by OCRA as architectural if they are used to set arrays size, if they are used in conditional
declarations, or in parametrized connections. A parameter in order to be recognized as architectural should be used as
parameter for parametric structures (parametric ports, parametric connection, parametric connection,...) or should be
in the right part of a connection with subcomponent’s architectural parameters assignment.

In the Figure 8 you can see for example that the architectural parameter n_sub_comp determinates the size of the
subcomponent array block_1.

6.1.2 Instantiating architectural parameters

Architectural parameters can be instantiated with the command ocra_instantiate_parametric_arch using the
option p with the specific parameter assignment.

Note that the command refers to the specific component instance, not to the component name. Given for example
the Figure 9, the parameter n_ports in component Block should be called block_1.n_ports.

@requires discrete-time

COMPONENT System1 system
INTERFACE
PARAMETER n_sub_comp : integer ;

REFINEMENT
SUB block_1 : array (n_sub_comp) of Block ;
CONNECTION block_1[i].inputPort := block_1[i - 1].outputPort for 1 <= i < n_sub_comp ;
CONNECTION block_1[0].inputPort := block_1[n_sub_comp -1].outputPort ;

COMPONENT Block
INTERFACE
INPUT inputPort : boolean ;
OUTPUT outputPort : boolean ;

Figure 8: Simple parametrized OSS example

@requires discrete-time
COMPONENT System1 system

INTERFACE
PARAMETER n_sub_comp : integer ;

REFINEMENT
SUB block_1 : array (n_sub_comp) of Block ;
CONNECTION block_1[i].n_ports := i for 1 <= i < n_sub_comp;

COMPONENT Block
INTERFACE
INPUT flowport1 : array (n_ports) of integer ;
PARAMETER n_ports : integer ;

Figure 9: Simple parametric OSS example

See command ocra_instantiate_parametric_arch for further informations.

Since there could be dependencies between architectural parameters of various component instances it is possible
to get the architectural parameters that should be instantiated first. See command ocra_get_required_arch_params
for further information.

6.1.3 Parameter assumptions

It is possible to specify some constraints to component’s architectural parameters. Using keyword PARAMETER
ASSUMPTIONS in INTERFACE part, the user will be able to specify a boolean expression that contains the parame-
ters. If this expression is false with the instantiation that has been provided, OCRA will trigger an error.

An example of PARAMETER ASSUMPTIONS:

PARAMETER size_0: integer;
PARAMETER size_1: integer;
PARAMETER boolean_param: boolean;
....
....
....
PARAMETER ASSUMPTIONS size_0 > size_1 & boolean_param;

6.2 Parametrized Language
Parametrized OCRA bring new features for the language, such as iterators, parametric connections,
parametric subcomponents, parametric ports and parametric contracts.

6.2.1 Iterators

Iterators express ranges of values in expressions, they are mainly used in parametric structures in order to iterate
through arrays.

They are defined with 3 different parts:

• lower bound

• index variable

• upper bound

The lower bound and the upper bound are positive integer values. They can be numbers (0,1,2,...),
architectural parameters or expressions over numbers and/or architectural parameters (3 * 2 * n/5).

The index variable is the label of the iterator. In order to be valid, the index variable cannot contains dots or
brackets. For example elspilon[5] and index.var are invalid index variables.
Examples of valid iterators:

0 <= i < n

where n is a parameter with type integer.
m + 3 <= i < 10

where m is a parameter with type integer.
n < i <= m

where n and m are parameters with type integer.
n*2 + 1 <= i < n * 16

where n is a parameter with type integer.

6.2.2 Guard

A guard is defined as an if followed by a boolean expression, the purpose of the guard is to decide if the line will
be instantiated through the boolean expression. The boolean expression can contains only architectural parameters,
values, and index variables related to iterators in the same line.
Here there are various examples of guards:

if (alpha > 3)

where alpha is a parameter with type integer.
if (beta and not(gamma))

where beta and gamma are parameters with type boolean.
if (i > j)for 0 <= i < n, 0 <= j < m

where n and m are parameters with type integer.

6.2.3 Big or

big_or is an operator that allow the user to express the or operator over an iterator. Example:

INPUT PORT port_array : array(n_ports)of boolean;
...
CONNECTION sub.port := big_or(for 0 <= i < n_ports, port_array[i]);

When the bounds of the iterator are all defined the big_or get parsed into a group of or. Suppose for example
that n_ports has been set to 3. The result will be the following:
CONNECTION sub.port := port_array[0] or port_array[1] or port_array[2];

6.2.4 Big and

big_and is an operator that allow the user to express the and operator over an iterator. Example:

INPUT PORT port_array : array(n_ports)of boolean;
...
CONNECTION sub.port := big_and(for (0 <= i < n_ports),port_array[i]);

When the bounds of the iterator are all defined the big_and get parsed into a group of and. Suppose for exam-
ple that n_ports has been set to 3. The result will be the following:
CONNECTION sub.port := port_array[0] and port_array[1] and port_array[2];

6.2.5 Count iterator

We can use count with iteration bounds in order to operates with arrays. The syntax is the following: count(for 0

<= i < n, ports[i]).

When the bounds of the iterator are all defined the count get written as the classic count operator.

6.2.6 Parametric Ports

A port is considered parametric when:

• it contains an if guard

• it is a port array and his size depends on an architectural parameter

A parametric port example:

PARAMETER size : integer;
PARAMETER port_exists : boolean;
INPUT PORT ports: array(size)of boolean if (port_exists);

6.2.7 Parametric Subcomponent

A SUB is considered parametric if al least one of the following points is true:

• it contains a guard

• it is a subcomponent array and his size depends on an architectural parameter

Parametric subcomponents examples:

SUB sub : SubComp if (sub_exists);

SUB b_array : array(b_size * 5)of B;

SUB b_array_cond : array(b_size)of B if (b_exists);

Where sub_exists, b_exists, b_size are architectural parameters.

6.2.8 Parametric connection

Parametric connections are like normal connections with a non mandatory if guard and a for with a set of iterators
separated by comma.

CONNECTION sub_array[i].ports[j] := ports[i] for 0 <= i <= (size - 1), 0 <= j < size;

CONNECTION sub.port := port if (port_instantiated);

CONNECTION sub_array[i].ports[j] := ports[i] if (array_inst);

Note that in these examples size, port_instantiated and array_inst are required to be architectural parame-
ters.

After the instantiation, the parametric connection will be written as multiple connections with the iterators values.
For example the last parametric connection with size assigned as 2 will became:
CONNECTION sub_array[0].iports[0] := ports[0];

CONNECTION sub_array[0].iports[1] := ports[0];

CONNECTION sub_array[1].iports[0] := ports[1];

CONNECTION sub_array[1].iports[1] := ports[1];

6.2.9 Parametric Contracts

A parametric contract is a contract that has an iterator, a guard or both. Here we have a couple of examples of para-
metric contracts:

CONTRACT c1 [i] (forall i, 0 <= i < n)if (exists)

assume: true;
guarantee: ports[i] > 3;

where n, exists are architectural parameters, ports is a parametric port array with size = n

CONTRACT c1 if (exists)

assume: true;
guarantee: ports[i] > 3;

where exists is an architectural parameter

6.2.10 Parametric Contract Refinement

Parametric refinedby is a a refinedby that has: an iterator, a guard or both.
Here there is an example of refinedby bodies:

CONTRACT Contract1 REFINEDBY

blocks[i].Contract1 for 0 <= i <= (n_blocks -1),

blocks[i].Contract2 if(ref_ctx2)for 0 <= i <= (n_blocks -1),

block_D.Contract if (have_d);

As for the other examples, inside the iteration bound n_blocks should be an architectural parameter.

7 Interactive Commands of OCRA

ocra check refinement - Checks the contract refinement of the OSS Command

ocra check refinement [-C <string>] [-c <string>] [-O] [-h] [-i <file>] [-k <int>]
[-a <string>] [-f text|xml] [-o <file>] [-s]

First, it checks the syntax of a model. In case of error, a message is given. Second, it checks that a given system
architecture is correct with respect to the specified refinement of contracts. The verification guarantees that if the
implementations of the leaf components are correct, then for every composite component C:

• every contract of C is satisfied by the implementations of the subcomponents of C

• every assumption of a subcomponent of C is satisfied by the implementations of the other subcomponents
of C or by the environment of C.

If the check finds that the refinement is wrong, the system gives you a counterexample. In case that option -s is
given, a summary of the checks is provided hiding the formula(s) and description of the trace(s).

Currently, past operators and option bmc force pltl tableau are not supported are not supported with the bmc
engine with discrete time interpretation.

Command Options:

-C <string> Check just the specified contract, rather than all of them
-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-c Consider the specified component, rather than the whole specification
-O checks only the local refinement of the selected component, disabling

the recursive refinement check on the subcomponents
-k int Set the BMC length
-a string Force algorithm type. Valid values are: bmc, bdd, ic3, auto [de-

fault=auto]. Where auto in discrete time interpretation is bdd when the
model is finite state, ic3 otherwise.

-f string Selects output format. Valid values are: text, xml [default=text]
-o <file> Set the output file [default=stdout]

-s Prints summary of the results
-w Enable crosslevel refinement verification by considering the whole

architecture
-j Considers leaf components contracts as subcontracts during refinement

verification

ocra check implementation - Verifies if an SMV/HyDI model satisfies the con-
tracts defined in the OSS model

Command

ocra check implementation -I <file> [-C <string>] [-h] [-i <file>] [-c <name>]
[-k <int>] [-l <int>] [-a <string>] [-f (text|xml)] [-o <file>]

Given a finite state machine modeled in the SMV/HyDI language, and an Othello System Specification, verifies
if the machine satisfies the contracts defined in the OSS.

Command Options:

-I file Reads the SMV/HyDI specification
-C <string> Check just the specified contract, rather than all of them
-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-l <int> bound of K-Liveness [default=10]
-c string Specify the component to be checked
-k string Using bmc algorithm:set the bound on length of path [default=10]. Us-

ing ic3 or kzeno: set the bound of underlying IC3 [default=10]
-a string Force algorithm type. Valid values are: bmc, bdd, ic3, auto [de-

fault=auto]. Where auto in discrete time interpretation is bdd when the
model is finite state, ic3 otherwise.

-f string Selects output format. Valid values are: text, xml [default=text]
-o <file> Set the output file [default=stdout]

ocra check syntax - Parses an OSS specification and type checks it Command

ocra check syntax (-i <file> | -p <string>) [-h] [-Q]

It checks the syntax of a model.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-p <string> Read the specification from a string as an assertion
-Q Skip instantiation check

go ocra - Parses an OSS specification and type checks it Command

go ocra [-h] [-i <file>]

Parses the model and performs syntactic checks over it.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input

ocra print system implementation - Compute and prints a system implementa-
tion

Command

ocra print system implementation [-h] [-i <file>] [-L] [-m <file>] [-o <file>]

Given an OSS specification, a set of SMV/HyDI files and a configuration file with a map between component
names and the SMV/HyDI file representing their implementation, outputs a single SMV/HyDI file for the system
implementation.

The configuration file looks like this:

Hydraulic Hydraulic.smv
Select Switch Select Switch.smv
subBSCU subBSCU.smv

or

Hydraulic Hydraulic.hydi
Select Switch Select Switch.hydi
subBSCU subBSCU.hydi

That is, a line for each space separeted association.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-L Disable printing of the contracts [default=enabled]
-m file Reads the file with the map (component name, component smv imple-

mentation file)
-o file Outputs the system implementation on file. If not specified, it prints to

standard output

ocra check consistency - Check if the contracts of the whole specification are
satisfiable

Command

ocra check consistency [-h] [-i <file>] [-j]

By default, it checks every assertion (assumption and guarantee) for being consistent, that is, satisfiable. Alter-
natively, if the option -j is given, it performs richer checks:

• For each contract, it checks consistency of the conjunction of its assumption and guarantee. Notice that this
check subsumes the one by default.

• For each composite component C, checks consistency among assumption of C and assumptions and guar-
antees of all subcomponents.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input

-j For each contract, checks consistency of the conjunction of its assump-
tion and guarantee and for each composite component C, checks con-
sistency among assumption of C and assumptions and guarantees of all
subcomponents

ocra check validation prop - Check validation properties Command

ocra check validation prop [-h] -i <file> [-a <string>] [-w] [-P <string>]
[-T <string> [-c <string>] -r <string>
[-p] <string>] [-f <string>] [-o <file>] [-u] [-s]

By default, it check all validation properties defined in the input specification. Moreover, the validation properties
defined in each refined component will be performed on it and its children in isolation. Alternatively, if the option
-w is given, it checks all validation properties (consistency, possibility, and entailment) considering the entire
architecture. In more details, the user can define some constraints on the architecture, for example on the input
of the components like setting an input into a constant from the father refinement. So, enable this option -w, the
check will consider all constrains defined on the architecture contrary to the default case. We remark that the
generated additional checks for the different instances in the architecture using option -w are not stored in the
data base of properties.

On the other hand, it is possible to check a validation property given by command line using options -T, -c,
-r, and -p. In more details, option -T allows you to specify the type of validation (consistency, possibility, or
entailment) to be checked in the given component -c. Option -r allows you to specify the subset of properties to
be considered given as formula ids separated by comma. In case that an entailment or possibility is desired to be
checked, option -p allows to specify it. In addition, it is possible to check consistency of all components given
the options -c “ALL” and -r “ALL”, or just simple checking the consistency of all properties and subcomponents
properties for a specific component by -c “component name” and -r “ALL”.

Moreover, if the option -u is given, it computes unsat cores when an entailment property is ok and a possibility
or consistency is not ok. Finally, if option -s is given, a summary of the checks is provided hiding the formula(s)
and description of the trace(s).

Regarding the output of the checks, for consistency and possibility properties, if the validation check finds that
is ok then the system gives you a trace as a witness. Otherwise, the system gives you a minimal subset of
formulas still inconsistent (unsat cores) only if option -u is enabled. For an entailment property either the set
of properties entails another formal property (representing the negation of the undesired behavior) and an unsat
core is presented to the user (if option -u is given) or it violates the additional formal property where the system
gives you a trace as a counterexample.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-a string Force algorithm type. Valid values are: bmc, bdd, ic3, auto [de-

fault=auto]. Where auto in discrete time interpretation is bdd when the
model is finite state, ic3 otherwise.

-w The whole architecture is considered for the checks
-P "name" Checks only the validation property with the given name

-T string Select type of validation property to be checked. Valid values are: con-
sistency, possibility, and entailment

-c string Component name. Valid value “ALL” to all components
-r string Subset of properties given as formulas id separated by comma “,”. Valid

value “ALL” to consider all contracts and subcomponent contracts
-p string Possibility/Assertion given as an input formula
-f string Selects output format. Valid values are: text, xml [default=text]
-o <file> Set the output file [default=stdout]
-u Compute unsat cores
-s Prints summary of the results

ocra check receptiveness - Verifies if an SMV model is compatible with every
environment satisfying the assumption of the contracts

Command

ocra check receptiveness -I <file> [-h] [-i <file>] [-c <name>]

Given a finite state machine modeled in the SMV language, and an Othello System Specification, verifies if the
machine is compatible with every environment satisfying the assumption of the contracts defined in the OSS. At
the moment, the command can be used only with propositional models.

Command Options:

-I file Reads the SMV specification
-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-c string Specify the component to be checked

ocra check composite impl - Check the system implementation compositionally
or monolithically

Command

ocra check composite impl -m <file> [-C <string>] [-h] [-a <string>] [-f <string>]
[-i <file>] [-k <int>] [-l <int] [-L] [-M] [-o <file>] [-R] [-s <file>] [-S
<string>]

It checks the correctness of the system implementation with a compositional strategy by checking:

1. the contract refinement

2. the implementation of each leaf component

Equivalent to issue ocra check refinement and ocra check implementation on each leaf component.

Alternatively, if the option -M is given, it checks the correctness of the system implementation with a monolithic
strategy. It computes the system implementation out of the leaf components and the system architecture and it
checks its correctness. Equivalent to issue ocra print system implementation and ocra check implementation.

The receptiveness check can be performed only on discrete-time models.

Command Options:

-m file Reads the file with the map (component name, component SMV/HyDI
implementation file)

-C <string> Check just the specified contract, rather than all of them
-h Shows a brief description of the available options.
-a string Force algorithm type. Valid values are: bmc, bdd, ic3, auto [de-

fault=auto]. Where auto in discrete time interpretation is bdd when the
model is finite state, ic3 otherwise.

-f string Selects output format. Valid values are: text, xml [default=text]
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-k int Set the BMC length
-l <int> bound of K-Liveness [default=10]
-L Disable printing of the contracts [default=enabled]
-M Perform a monolithic verification by building the system

implementation
-o <file> Set the output file [default=stdout]
-R Skip the refinement check
-s <file> Set the output file for the system component [default=None]
-S <file> Select which checks are performed on the leaves [de-

fault=implementation] Valid values are full, implementation, none,
receptiveness

ocra tighten contract refinement - Tighten a contract refinement Command

ocra tighten contract refinement [-h] -i <file> -C <string> [-c <string>]
[-g <string>] [-f <string>] [-o <file>] [-s]

Tighten a contract refinement by either weakening the assumption of the parent contract and the guarantee of its
subcontracts (top-down approach) or strengthening the guarantee of the parent contract and the assumption of its
subcontracts (bottom-up approach). By default, it performs a top-down tightening. Alternatively, if the option
-g is given, it allows to select either a top-down tightening (’w’) or bottom-up tightening (’s’).

Finally, if the option -s is given, it tighten the contract refinement considering those contracts refinement at the
same level which have subcontracts in common.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-c Consider the specified component, rather than the whole specification
-C string Contract name
-g string Select approach to tighten the given contract refinement Valid values:

’w’ (top-down) and ’s’ (bottom-up), [default=w]

-f string Selects output format. Valid values are: text, xml [default=text]
-o <file> Set the output file [default=stdout]
-s Prints summary of the results

ocra print implementation template - Prints the SMV/HyDI templates of the leaf
components

Command

ocra print implementation template [-h] [-c <name>] [-i <file>] [-L] [-m <file>]

The purpose of this command is to aid the modelling of the implementations of the basic (leaf) components of a
system.

It generates one o more SMV/HyDI files, each of them representing the implementation of a leaf component.
The generated models are templates: they contain just the language of the component.

If -m is given, only the listed components are processed and the SMV/HyDI files are named according to the
mapping. Otherwise, all the leaf components are processed and the SMV/HyDI files are named after the name
of the components.

The configuration file looks like this:
Hydraulic Hydraulic.smv
Select Switch Select Switch.smv
subBSCU subBSCU.smv

or

Hydraulic Hydraulic.hydi
Select Switch Select Switch.hydi
subBSCU subBSCU.hydi

That is, a line for each space separated association.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-L Disable printing of the contracts [default=enabled]
-c Consider the specified component, rather than the whole specification
-m file Reads the file with the map (component name, component SMV/HyDI

implementation file)

ocra write anonymized models - Prints the SMV templates of the leaf compo-
nents

Command

ocra write anonymized models [-h] [-i <file>] [-m <file>] [-d <file>]

The configuration file looks like this:
Hydraulic Hydraulic.smv
Select Switch Select Switch.smv
subBSCU subBSCU.smv

That is, a line for each space separated association.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-m file Reads the file with the map (component name, component smv imple-

mentation file)
-d file Reads the file with the map (component name, component smv imple-

mentation file)

ocra print proof obligations - Prints on files the proof obligations composing the
refinement check

Command

ocra print proof obligations[-h] [-i <file>] [-o <file>]

It computes the proof obligations that compose the refinement check and prints them as SMV files, if discrete
time interpretation is selected, as HRELTL files otherwise. Trivial proof obligations are not printed.

If -o option is given, its value is used as a prefix that, together with a counter, is used as filename. Otherwise, the
filename will follow this format:
< model > < component > < contract > (i|e)[< subcontract >]. < extension >
Where:

• model is the pathname of the input oss

• component is the name of the refined component

• contract is the name of the refined contract

• “i” or “e” stands for the type of the check, that is “implementation” or “environment”

• subcontract, present only for the environment check, is the name of a contract belonging to the refinement
of the contract under checking

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-o file Set base output file name

ocra discrete time Environment Variable

Interpret the ocra specification over discrete time. Default is false, specification is interpreted over hybrid time.

ocra make warnings errors Environment Variable

Treat every warning as an error. Default is false.

ocra old smv format Environment Variable

Write and read SMV models with the format used before version 1.3.0. Default is false.

ocra async fairness Environment Variable

Add to the specification the constraint that each subcomponent will eventually not stutter. It affects only models
with asynchronous refinement.

ocra show traces - Shows the traces generated in an ocra session Command

ocra show traces [-h] [-v] [-t] [-A] [-m | -o output-file]
[-a | trace number[.from state[:[to state]]]

Shows the traces currently stored in system memory, if any. By default it shows the last generated trace, if any.
Optional trace number can be followed by two indexes (from state, to state), denoting a trace “slice”. Thus, it is
possible to require printout only of an arbitrary fragment of the trace (this can be helpful when inspecting very
big traces). Moreover, the trace descrition also shows information of the component where was generated the
trace.

Command Options:

-h Shows a brief description of the available options.
-v Verbosely prints traces content (all state ports, input/output ports, and

parameters, otherwise it prints out only the variables that have changed
their value from previous state). This option only applies when the Basic
Trace Explainer plugin is used to display the trace.

-t Prints only the total number of currently stored traces.
-a Prints all the currently stored traces.
-m Pipes the output through the program specified by the PAGER shell vari-

able if defined, else through the UNIX command “more”.
-o output-file Writes the output generated by the command to output-file.
trace number The (ordinal) identifier number of the trace to be printed. Omitting the

trace number causes the most recently generated trace to be printed.
from step The number of the first step of the trace to be printed. Negative numbers

can be used to denote right-to-left indexes from the last step.
to step The number of the trace to be printed. Negative numbers can be used to

denote right-to-left indexes from the last step. Omitting this parameter
causes the entire suffix of the trace to be printed.

-A Prints the trace(s) using a rewriting mapping for all symbols.

ocra show property - Shows the currently stored properties in an ocra session. Command

ocra show property [-h] [-v] [[-c <name> | -a | -g | -q | -r | -s] |
[t | f]] | [-n idx | -P <name>]

Shows the properties currently stored in the list of properties. This list is initialized with the properties present in
the input file, if any; then all of the properties added by the user with the basic command ocra check syntax
or with any command which requires as input an OSS specification. Generally, three types of properties are
distinguished contracts, validation props, and proof obligations. In the last case, the proof obligations are only
added to the list of properties through the command ocra check refinement.

For every property, the following informations are displayed:

• the identifier of the property (a progressive number);

• the property name;

• the property formula;

• the category (ASSUMPTION PROP, GUARANTEE PROP, CONSISTENCY PROP, POSSIBILITY PROP,
ENTAILMENT PROP, PROOF OBLIG PROP, and TRACE PROP);

• the status of the property (OK, NOT OK, N/A);

• if the formula has been found to be false (true), the index number of the corresponding counterexample
(witness) trace;

• the list of traces id that the property is satisfied on each one.

• the list of traces id that the property is not satisfied on each one.

Each property has a name associated except for property with category TRACE PROP (see command
ocra check ltlspec on trace). Validation properties are the only ones that contain a name by definition.
On the other hand, for each contract the name for its assumption and guarantee is defined as follows:

< component > . < contract > .[ASSUMPTION |GUARANTEE].

Finally, for each proof obligation, its name is defined as follows:

< component > . < contract > (imp|env)[< subcontract >]
Where:

• component is the name of the refined component

• contract is the name of the refined contract

• “imp” or “env” stands for the type of the check, that is “implementation” or “environment”

• subcontract, present only for the environment check, is the name of a contract belonging to the refinement
of the contract under checking

By default, all the properties currently stored in the list of properties are shown without printing the formula
contents. The option -v enable the visualization of the formulas. Specifying the suitable options, properties with
a certain category and/or of a certain status (OK or NOT OK), or with a given identifier, or with a given name it
is possible to let the system show a restricted set of properties. Moreover, it is possible to show all properties of
a given component name. It is allowed to insert several options per category.

Command Options:

-h Shows a brief description of the available options.
-v Verbosely prints formula contents.
-c <name> Prints out the properties of component named “name”.
-a Prints only assumption properties.
-g Prints only guarantee properties.
-q Prints only validation properties.
-r Prints only proof obligation properties.
-t Prints only those properties found to be OK.

-f Prints only those properties found to be NOT OK.
-n idx Prints out the property numbered “idx”.
-P <name> Prints out the property named “name”.
-s Prints the number of stored properties.

ocra check ltlspec on trace - Checks whether a property is satisfied on a trace Command

ocra check ltlspec on trace [-h] [-i] [-n number | -P <name> |
[[-c <name>] -p "expr"]] [-l loopback] trace number

Checks whether a property is satisfied on a given trace. The problem generated can be checked using SAT/SMT
backend.

Option -i forces the use of the engine for infinite domains. In case the user does not provide this option, a SAT
solver is called by default for checking the problem generated if only the formula and trace does not contain
infinite precision variables. Otherwise, a SMT solver will be called for solving the problem generated.

We take into account that each OCRA trace may correspond to an infinite number of traces due to the possible
presence of more than one loopbacks. So, it is not possible (or at least straightforward) to check all of them.
Therefore, we consider just one loopback and provide the user with the possibility to select it.

A "expr" to be checked can be specified at command line using option -p. This formula is added to the data
base of property with the category TRACE PROP. Each property in the data base is associated with component
information, i.e., option -c allows to the user to associate "expr" with the component information provided. In
case the user does not provide this information, the component associated to "expr" is the component system
by default.

Alternatively, options -n and -P can be used for checking a particular formula in the property database. If
neither -n nor -p nor -P are used, then each contract (assumption and guarantee) in the OSS specification is
checked on the given trace.

The loopback value can be specified at command line using option -l. This must a valid loopback value on
the given trace. If it is not valid, then an error message is printed and also the available loopbacks are provided.
In case that option -l is not used, then a warning is printed and the check is performed using the first loopback
found on the given trace.

Finally, the last argument of the command is the trace number which has to correspond to a trace stored in the
system memory. If the trace number is omitted, then an error message is printed. In case that the trace has not
loopbacks, then an error message is printed informing the user that the selected trace is finite and cannot satisfy
any LTL formula.

Command Options:

-h Shows a brief description of the available options.
-i Forces the use of the engine for infinite domains.
-c <name> Component name to be assigned to the input formula
-p "expr" Checks only the given formula “expr”
-P <name> Checks only the property with the given name
-n <number> Checks only the property with the given index number in the property

database.

-l <loopback> Checks the property on the trace using loopback value. This must a
valid loopback value on the given trace.

trace number The (ordinal) identifier number of the trace to be used to check the prop-
erty. This must be the last argument of the command.

ocra debug property - Debugs a property Command

ocra debug property [-h] [-n number | -P <name>] [-s]

By default, it debugs all unsatisfied proof obligations and entailment properties in an oss specification. Generally
speaking, the procedure debugs each of the subformulas of the property on the related trace that it was generated
as a counterexample or as a witnesses during a check (e.g., ocra check refinement, ocra check consistency,
or ocra check validation prop). Thereby, only properties related to a trace can be debugged.

Alternatively, options -n and -P can be used for debugging a particular property. Finally, if option -s is given,
only the not satisfied results are printed.

Command Options:

-h Shows a brief description of the available options.
-n <number> Debugs only the property with the given index number in the property

database.
-P "name" Debugs only the property with the given name.
-s Prints summary of the results

ocra compute fault tree - Generates a hierarchical fault tree from a contract-
based system decomposition

Command

ocra compute fault tree [-C <string>] [-h] [-i <file>] [-k <int>] [-a <string>]
[-m <file>] [-x <file>] [-f <format>] [-o <file>]

Given a contract-based decomposition it generates a heirarchical fault tree according with the approach desribed
in “M. Bozzano, A. Cimatti, C. Mattarei, and S. Tonetta. Formal Safety Assessment via Contract-Based Design.
In Proceedings of ATVA 2014. Sydney, Australia, November 3-7, 2014.”.

The optional parameter “-x” enables the additional fault tree computation on leaves implementations by providing
a fault injection xml file description.

Command Options:

-C <string> Check just the specified contract, rather than all of them
-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-k <int> with bmc: bound on length of path [default=10] with ic3 or kzeno:

bound of underlying IC3 [default=10]

-a string Force algorithm type. Valid values are: bmc, bdd, ic3, auto [de-
fault=auto]. Where auto in discrete time interpretation is bdd when the
model is finite state, ic3 otherwise.

-m <file> Set a file with the mapping OSS component -¿ SMV file. Its format is:
(¡OSS component name¿ ¡SMV filename¿)+ Equivalent to deprecated
-a

-x <file> XML file describing the fault extension.
-f <string> select output format [default=text] Valid values are: text, xml,

xml no text
-o <file> Set the output file [default=stdout]

ocra instantiate parametric arch - Instantiate an OSS specification and returns
instantiated OSS file

Command

ocra instantiate parametric arch -i <file> (-I <file> | -p <string>) -o <file>
[-h]

Given an assignment list it instantiates parameters of a parametric OCRA model.

The assignment list is composed in this way:
system parameter = value,
system comp.subcomp.paremeter = value,
system comp.subcomp.another sub.parameter = value

In the assignment list is possible for the user to specify a range of components array to do multiple assignments
in a single instruction. This can be done using this notation to specify every component in this range:
component array[lbound value .. upper bound value]

Example of instantiation list:

system param = 15,
system comp.subcomp[0..10].param = 11,
system comp.subcomp[0].other sub[1..100].alpha = true

It is also possible to launch the command without any assignment list, in this case only parameters assigned
(using connections) inside the OSS file will be instantiated.

The command will save the result specification in the file specified with -o, the returned specification can be
also only partially instantiated, full instantiation is not a constraint.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-p <string> Read the parameter assignments from a string as a csv assignment list
-I <file> Read the parameter assignments from a csv file

-o <file> Write the instantiated OSS architecture in this file

ocra instantiate automatically arch - Instantiate a parametric architecture with
all possible parameters values

Command

ocra instantiate automatically arch -i <file> (-I <file> | -p <string>) [-h]
[-b <int>]

This command try to instantiate all possible specifications using parameter assumptions as constraints on pa-
rameters values. The command at the moment is not able to determinate if a parameter assumption provides
infinite assignments. In that case the program might not terminate. This command will save the instantiated
specifications in output files, also the assignments that generate the specifications are saved in csv output files.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-p <string> Read the parameter assignments from a string as a csv assignment list
-I <file> Read the parameter assignments from a csv file
-b <int> Set the bound of assignments from the PARAMETER ASSUMPTIONS of

each component

ocra get required arch params - Get the architectural parameters required in
order to perform instantiation

Command

ocra get required arch params -i <file> [-h] [-o <file>] [-X]

Given an OCRA model, get the required parameters in order to go further in the instantiation. This command
does not always return all parameters required for instantiation, only the parameters that do not depend on other
unsetted parameters.
For Example: Given a non instantiated parameter that belongs to a component C, if another component B have
parametric conditions on an instance of a subcomponent of type C (existence, size of an array), it is not possible
to say if this parameter should be initialized or not.

This command fill output file with comma separated value parameters, it is possible with option -X to show
this parameters in a compact form that unify arrays in contiguos ranges.

Example:
Given required parameters a[0].b[0].a, a[0].b[1].a, a[1].b[0].a, a[1].b[1].a, compact form of these parameters is
a[0 .. 1].b[0 .. 1].a.

Command Options:

-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input

-o <file> Write the required parameters in this file
-X Print compacted parameters

ocra check param refinement - Checks the contract refinement of the
parametrized OSS

Command

ocra check param refinement [-C <string>] [-c <string>] [-O] [-h] [-i <file>]
[-k <int>] [-b <int>] [-a <string>] [-f text|xml] [-o <file>] [-s]

This command works as the command ocra_check_refinement. The difference is that this command sup-
ports parameterized models and it finds all the assignments to the architectural parameters such that the contract
refinement is correct.

Currently, past operators are not supported. To prevent non-termination a bound on the number of configurations
has been introduced. This bound can be specified with the option -b and it represents the maximum number of
possible instantiations considered in each component.

Command Options:

-C <string> Check just the specified contract, rather than all of them
-h Shows a brief description of the available options.
-i file Reads the OSS specification. If not specified, the command reads from

standard input
-c Consider the specified component, rather than the whole specification
-O checks only the local refinement of the selected component, disabling

the recursive refinement check on the subcomponents
-k int Set the BMC length
-a string Force algorithm type. Valid values are: bmc, bdd, ic3, auto [de-

fault=auto]. Where auto in discrete time interpretation is bdd when the
model is finite state, ic3 otherwise.

-f string Selects output format. Valid values are: text, xml [default=text]
-o <file> Set the output file [default=stdout]
-b <int> Set the bound of assignments from the PARAMETER ASSUMPTIONS of

each component

8 OCRA Command Line Options
OCRA accepts the following syntax:

system prompt> ocra [command line options] input-file <RET>

input-file Set the OSS input file
-ocra-discrete-time Enables the interpretation of the model over discrete time instead of

default hybrid time. The model must not contain:

• continuous variables

• der operator

• time until operator

• timed operators

• clock variables

-ocra-timed Enables the interpretation of the model over timed domain instead of
default hybrid time. The model must not contain:

• continuous variables

• der operator

-ocra-old-smv-format Write and read SMV models with the format used before version 1.3.0
-ocra-async-fairness Add to the specification the constraint that each subcomponent will

eventually not stutter. It affects only models with asynchronous
refinement.

References
[BCMT14] M. Bozzano, A. Cimatti, C. Mattarei, and S. Tonetta. Formal Safety Assessment via Contract-Based

Design. In ATVA, 2014. To appear.

[CES] CESAR patterns. http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_
SP2_R2.2_M2_v1.000.pdf.

[CRST12] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Validation of Requirements for Hybrid Systems: a Formal
Approach. ACM Trans. Softw. Eng. Methodol., 21(4):22, 2012.

[CRT09] A. Cimatti, M. Roveri, and S. Tonetta. Requirements Validation for Hybrid Systems. In CAV, pages
188–203, 2009.

[CT] A. Cimatti and S. Tonetta. Contracts-refinement proof system for component-based embedded systems .
Sci. Comput. Program. To appear.

[CT12] A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-Based Design. In SEAA, 2012.

[FoR] FoReVer project. https://es.fbk.eu/index.php?n=Projects.FoReVer.

[HyC] HyCOMP website. https://es.fbk.eu/tools/hycomp/.

[NuS] NuSMV3 website. https://es.fbk.eu/tools/nusmv3/.

[nuX] nuXmv website. https://es.fbk.eu/tools/nuXmv/.

[OCR] OCRA website. https://es.fbk.eu/tools/ocra/.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977.

http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000.pdf
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000.pdf
https://es.fbk.eu/index.php?n=Projects.FoReVer
https://es.fbk.eu/tools/hycomp/
https://es.fbk.eu/tools/nusmv3/
https://es.fbk.eu/tools/nuXmv/
https://es.fbk.eu/tools/ocra/

[Saf] SafeCer project. http://www.safecer.eu.

[SPE] SPEED project. http://www.speeds.eu.com/.

[Ton17] Stefano Tonetta. Linear-time Temporal Logic with Event Freezing Functions. In Proceedings Eighth
International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2017, Roma,
Italy, 20-22 September 2017., pages 195–209, 2017.

[XSA] xSAP website. https://es.fbk.eu/tools/xsap/.

http://www.safecer.eu
http://www.speeds.eu.com/
https://es.fbk.eu/tools/xsap/

A Concrete syntax

A.1 Othello System Specification
An Othello System Specification (OSS) is written following the grammar below (in Extended Backus-Naur Form):
OSS = requirements? system_comp component* ;
requirements = "@requires" "discrete-time" | "@requires" "hybrid-time" | "@requires" "timed-domain";
system_comp = "COMPONENT" comptype? "system" interface refinement? ;
component = "COMPONENT" comptype interface refinement? ;
interface = "INTERFACE" var* contract* define* i_assertion* param_asms*;
refinement = "ASYNC"? "REFINEMENT" subcomponent* connection* con_constraint* refinedby* valid_prop*

r_assertion* behaviour*;
var = (port | parameter | operation) ";" ;
port = direction? "PORT" name ":" type non_cont? ("if" param_logic_expr)?;
direction = "INPUT" | "OUTPUT" ;
parameter = "PARAMETER" name ":" type | euf ;
operation = ("PROVIDED" | "REQUIRED") "OPERATION" "PORT"? name

"(" op_params ")" ":" (type | "void") ;
op_params = port? | port ("," port)* ;
define = "DEFINE" name ":=" i_constraint ";"
type = "boolean" | "integer" | "real" | "continuous" | "event" | "clock" |

"{" (number | name)+ "}" -- enumeration |
number ".." number -- range |
("unsigned" | "signed")? "word" "[" number "]" |
"array" number ".." number "of" type |
"array" "(" param_expr ")" "of" type ;

non_cont = "noncontinuous";
euf = euf_subtype("*" euf_subtype)* "->" euf_subtype ;
euf_subtype = "boolean" | "real" | "integer" ;
contract = "CONTRACT" name param_contract?

"assume" ":" i_constraint ";"
"guarantee" ":" i_constraint ";" ;

i_assertion = "ASSERTION" "NAME" name ":=" i_constraint ";"
r_assertion = "ASSERTION" "NAME" name ":=" r_constraint ";"
param_asms = "PARAMETER" "ASSUMPTIONS" param_logic_expr ";"
subcomponent = "SUB" name ":" subcomp_type ";"
subcomp_type = comptype ("if" param_logic_expr)? |

"array" "(" param_logic_expr ")" of comptype ("if" param_logic_expr)? ;
connection = "CONNECTION" name ":=" right_connect ";"
right_connect = r_constraint |

r_constraint ("if" param_logic_expr)? iteration_bounds* ;
con_constraint = "CONSTRAINT" r_constraint ";"
iteration_bounds = "for" iteration_bound ("," iteration_bound)* ";" ;
iteration_bound = param_logic_expr lt_e_op name lt_e_op param_logic_expr ;
refinedby = "CONTRACT" name param_contract? "REFINEDBY" contr_id+ ";" ;
contr_id = name "." name ("if" param_logic_expr)? ("for" iteration_bound)? ;
param_contract = "[" name "]" "(" "forall" name "," iteration_bound ")" ("if" param_logic_expr)? ;
valid_prop = "CONSISTENCY" "NAME" name ":=" formula_id+; |

"POSSIBILITY" "NAME" name ":=" (formula_id | constrain) "GIVEN" formula_id+ ";" |
"ENTAILMENT" "NAME" name ":=" (formula_id | constrain) "BY" formula_id+ ";" ;

formula_id = name "." name "." ("ASSUMPTION" | "GUARANTEE" | "NORM_GUARANTEE") ;
behaviour = "INIT" simple_formula non_cont? ";" |

"VAR" name ":" type ";" |
"INVAR" simple_formula ";" |
"TRANS" next_formula ";" |
"URGENT" next_formula ";";

where:

• name is a string;

• there cannot be two components with the same name;

• for every component, there cannot be two subcomponents with the same name;

• comptype is a string that matches one of the components’ name;

• the relationship that links a component to its subcomponents is not circular and form a tree rooted in the system
component;

• i constraint must be an Othello constraint as defined below where every variable must match a variable of
the interface;

• r constraint must be an Othello constraint as defined below where every variable must either match a vari-
able of the interface or be in the form sub.var where sub matches a subcomponent’s name of the refinement
and var matches a variable of the interface of such subcomponent;

• param logic expr represents a logical or arithmetic expression restricted to referencing only parameters,
next values of parameters, array sizes, constants and index variables.

• lt e op is < or <= operator.

• there cannot be two validation properties with the same name.

A.2 Othello Port Types
A.2.1 Boolean

The boolean type comprises symbolic values FALSE and TRUE. The event type has the same domain of the boolean
type. The difference is that while a boolean port is evaluated in a state, an event is evaluated in a transition: we say
that an event occurs during a transition if it is TRUE in that transition.

Accordingly, the values of event ports are listed in a separate “Transition” section in the OCRA counterexamples,
between two “State” sections.

A.2.2 Enumeration Types

An enumeration type is a type specified by full enumerations of all the values that the type comprises. For example,
the enumeration of values may be {stopped, running, waiting, finished}, {2, 4, -2, 0}, {FAIL, 1,

3, 7, OK}, etc. All elements of an enumeration have to be unique although the order of elements is not important. A
range of whole numbers can be declared with N..M. For example the following declarations are equivalent:
2..5

{2, 3, 4, 5}

A.2.3 Word

The unsigned word[•] and signed word[•] types are used to model vector of bits (booleans) which allow bitwise
logical and arithmetic operations (unsigned and signed, respectively). These types are distinguishable by their width.
For example, type unsigned word[3] represents vector of three bits, which allows unsigned operations, and type
signed word[7] represents vector of seven bits, which allows signed operations.

When values of unsigned word[N] are interpreted as integer numbers the bit representation used is the most
popular one, i.e. each bit represents a successive power of 2 between 0 (bit number 0) and 2N−1 (bit number N − 1).
Thus unsigned word[N] is able to represent values from 0 to 2N − 1.

The bit representation of signed word[N] type is “two’s complement”, i.e., negative numbers are represented by
2N minus their absolute value. Thus, the possible values for signed word[N] are from −2N−1 to 2N−1 − 1.

A.2.4 Integer

The domain of the integer type is the set of integers. Note that the use of ports with integer type requires the usage
of infinite-state model checking algorithms.

A.2.5 Real

The domain of the real type is the set of real numbers. Note that the use of ports with real type requires the usage of
infinite-state model checking algorithms.

A.2.6 Clock

The domain of the clock type is the set of real numbers. clock variables increase themselves the same amount during
time elapse transitions, while the other types variables do not change instead. Note that the use of ports with clock
type requires the usage of infinite-state model checking algorithms and is available only for the timed domain mode
of OCRA.

A.2.7 Continuous

The domain of the continuous type is the set of continuous and differentiable functions. They are used to represent
a value that is a continuous function of time. Note that the use of ports with continuous type requires the usage of
infinite-state model checking algorithms and is available only for the hybrid time mode of OCRA.

A.2.8 Array

Arrays are declared with a lower and upper bound for the index, and the type of the elements in the array. For example,

array 0..3 of boolean
array 10..20 of {OK, y, z}
array 1..8 of array -1..2 of unsigned word[5]

The type array 1..8 of array -1..2 of unsigned word[5] means an array of 8 elements (from 1 to 8), each of
which is an array of 4 elements (from -1 to 2) that are 5-bit-long unsigned words.

Array subtype is the immediate subtype of an array type. For example, subtype of array 1..8 of array -1..2

of unsigned word[5] is array -1..2 of unsigned word[5] which has its own subtype unsigned word[5].
Expression of array type can be constructed with variables of array type.
Internally, these arrays are treated as a set of variables.

A.2.9 Noncontinuous annotation

In OCRA it is possible to mark variables as noncontinuous. This language feature enables a discrete time variable to
change during a timed transition. This token of the language is usable only with time domain mode. clock, event
and continuous variables cannot be annotated with noncontinuous. Examples of correct usage:

• INPUT PORT inp_port : boolean noncontinuous

• OUTPUT PORT inp_port : real noncontinuous

• VAR internal_var : real noncontinuous

• OUTPUT PORT out_array : array(10)of real noncontinuous

A.2.10 Uninterpreted functions

In OCRA it is also possible to define uninterpreted functions. Only parameters can be declared with this type. These
functions are rigid, i.e. their denotation does not change from two different time points. These functions can be seen as
parameters: the denotation of the function is defined in the initial state and kept from that point on. Below is reported
a simple example of declaring a function funct1 that takes two reals as arguments, and returns an integer, and a
function funct2 that takes two reals and returns an unsigned word of size 32.

PARAMETER funct1 : real * real -> integer ;
PARAMETER funct2 : real * real -> unsigned word[32] ;

Note: Currently in OCRA we only support a limited number of data types both as return type and as type of each
argument of a function. In particular, the supported types are: boolean, real, integer, and word[N]. Support for
richer types (e.g. enumeratives, bouded integers and array) is ongoing.

A.3 Othello constraints5

An Othello constraint is written following the grammar below (in Extended Backus-Naur Form):

constraint = atom |
-- boolean operators
"not" constraint |
"big_or" "(" iteration_bound, constraint ")" |
"big_and" "(" iteration_bound, constraint ")" |
constraint "and" constraint |
constraint "or" constraint |
constraint "xor" constraint |
constraint "implies" constraint |
constraint "iff" constraint |
-- temporal future operators
"always" within? constraint |
"never" within? constraint |
"in the future" within? constraint |
"then" constraint |
constraint "until" within? constraint |
constraint "releases" within? constraint |
-- temporal past operators
"historically" within?constraint |
"in the past" within? constraint |
"previously" within? constraint |
constraint "since" within? constraint |
constraint "triggered" within? constraint |
term "at next" constraint |
term "at last" constraint |
"X˜" constraint |
"Y˜" constraint
;

atom = "true" |
"false" |
term relational_op term |
"time_until" "(" term ")" relational_op term |
"time_since" "(" term ")" relational_op term |
boolean_term |
fall(boolean_term) |
rise(boolean_term) |
change(term);

term = variable |
"der" "(" variable ")" |
"next" "(" variable ")" |
constant |
term "+" term |
term "-" term |
term "*" term |
term "/" term |
term "mod" term |
abs "(" term ")" |
"min" "(" term "," term ")" |
"max" "(" term "," term ")" |
term "[" index "]" | -- array indexing
function "(" term(, term)* ")" | -- function call
term "?" term ":" term | -- compact if then else
"case" (term ":" term ";")+ "esac" | -- if then else
count "(" term ("," term)* ")" | -- count of true boolean expressions
-- word operators
term ">>" term | -- bit shift right
term "<<" term | -- bit shift left
term "[" term ":" term "]" | -- word bits selection
term "::" term | -- word concatenation
sizeof "(" term ")" | -- word size as an integer
extend "(" term "," term ")" | -- word width extension
resize "(" term "," term ")" | -- word width resize
signed word[N] "(" term ")" | -- integer to signed word conversion
unsigned word[N] "(" term ")" | -- integer to unsigned word conversion
-- set operators
term "union" term |
"{" term ("," term)"}" | -- set
term "in" term | -- set membership
-- cast operators

5The OCRA data types and operators are based on the NUXMV input language. See https://es.fbk.eu/tools/nuxmv/downloads/
nuxmv-user-manual.pdf for a detailed description.

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

word1 "(" term ")" | -- boolean to unsigned word[1] conversion
bool "(" term ")" |
toint "(" term ")" |
swconst "(" term ")" | -- integer to signed word constant conversion
uwconst "(" term ")" | -- integer to unsigned word constant conversion
signed "(" term ")" | -- unsigned word to signed word conversion
unsigned "(" term ")" | -- signed word to signed word conversion
floor "(" term ")"
;

relational_op = ("=" | "!=" | "<" | ">" | "<=" | ">=") ;

within = "within"? "[" term "," ("+oo" | term) "]";

where:

• constant is a constant number;

• variable is a string.

• boolean term is a term of type boolean.

B Abstract syntax and semantics

B.1 Abstract syntax and semantics of HRELTL constraints
B.1.1 Abstract syntax

The logic underlying Othello constraints is called HRELTL. HRELTL is built over a set of basic atoms, that are real
arithmetic predicates over V ∪ NEXT(V), or over V ∪ DER(V), where V is a set of variables, NEXT(V) the set of next
variables and DER(V) the set of derivatives.

The set PRED is defined as the set of linear arithmetic predicates in one of the following forms:

• a0 + a1v1 + a2v2 + · · ·+ anvn ∼ 0 where v1, . . . , vn ∈ V , a0, . . . , an are constants, and ∼ ∈ {<,>,=,≤,≥
, 6=}6.

• a0+a1v̇ ./ 0 where v ∈ VC , a0, a1 are arithmetic predicates over variables in VD, and∼∈ {<,>,=,≤,≥, 6=}.

The HRELTL is defined as the extension of LTL defined with the following rules: if p ∈ PRED, φ1 and φ2 are
HRELTL formulas, e is an event, ∼ ∈ {<,>,=,≤,≥, 6=} and c an arithmetic term, then:

• p is a HRELTL formula;

• ¬φ1, φ1 ∧ φ2, X φ1, φ1 U φ2 are HRELTL formulas;

• B∼ce and C∼ce are HRELTL formulas.

We use standard abbreviations for ∨, →, G , F , R (see, e.g., [CRT09]). B corresponds to “time until”, C to
“time since”. “never” is an abbreviation for G ¬. fall(φ) and rise(φ) are abbreviations of φ ∧ X!φ and !φ ∧ Xφ
respectively. change(u) is an abbreviation for next(u) 6= u. The other abstract connectives correspond the concrete
ones used in the previous section in a straightforward way.

6As described in [CRT09], instead of constants, also discrete variables can be used, but the currently used SMT solver does not support non-linear
constraints.

B.1.2 Semantics

HRELTL formulas are interpreted with hybrid traces, which are defined as follows. Let V be the finite disjoint union
of the sets of variables VD (with a discrete evolution) and VC (with a continuous evolution). A state s is an assignment
to the variables of V (s : V → R). We write Σ for the set of states. Let f : R → Σ be a function describing a
continuous evolution. We define the projection of f over a variable v, written fv , as fv(t) =̇ f(t)(v). We say that
a function f : R → R is piecewise analytic iff there exists a sequence of adjacent intervals J0, J1, ... ⊆ R and a
sequence of analytic functions h0, h1, ... such that ∪iJi = R, and for all i ∈ N, f(t) = hi(t) for all t ∈ Ji. Note that,
if f is piecewise analytic, the left and right derivatives exist in all points. We denote with ḟ the derivative of a real
function f , with ḟ(t)− and ḟ(t)+ the left and the right derivatives respectively of f in t. Let I be an interval of R or
N; we denote with le(I) and ue(I) the lower and upper endpoints of I , respectively. We denote with R+ the set of
non-negative real numbers.

A hybrid trace over V is a sequence 〈f, I〉 =̇ 〈f0, I0〉, 〈f1, I1〉, 〈f2, I2〉, . . . such that, for all i ∈ N,

• either Ii is an open interval (Ii = (t, t′) for some t, t′ ∈ R+, t < t′) or is a singular interval (Ii = [t, t] for some
t ∈ R+);

• the intervals are adjacent, i.e. ue(Ii) = le(Ii+1);

• the intervals cover R+:
⋃
i∈N Ii = R+ (thus I0 = [0, 0]);

• fi : R→ Σ is a function such that, for all v ∈ VC , fvi is continuous and piecewise analytic, and for all v ∈ VD,
fvi is constant;

• if Ii = (t, t′) then fi(t) = fi−1(t), fi(t′) = fi+1(t′).

We denote with PRED the set of predicates, with p a generic predicate, with pcurr a predicate over V only,
with pnext a predicate over V and NEXT(V) containing at least an event variable or a next variable, and with pder a
predicate over V and DER(V) containing at least a derivative variable. We denote with p the predicate obtained from
p by replacing < with ≥, > with ≤, = with 6= and vice versa. We denote with p∼ the predicate obtained from p by
substituting the top-level operator with ∼, for ∼ ∈ {<,>,=,≤,≥, 6=}.

The HRELTL is interpreted over hybrid traces. The predicates pcurr, pnext and pder are interpreted over hybrid
traces as follows:

• 〈f, I〉, i |=p pcurr iff, for all t ∈ Ii, pcurr evaluates to true when v is equal to fvi (t), denoted with fi(t) |=p p;

• 〈f, I〉, i |=p pnext iff there is a discrete step between i and i + 1, i.e. Ii = Ii+1 = [t, t], and pnext evaluates to
true when v is equal to fvi (t) and NEXT(v) to fvi+1(t), denoted with fi(t), fi+1(t) |=p pnext;

• 〈f, I〉, i |=p pder iff, for all t ∈ Ii, pder evaluates to true both when v is equal to fvi (t) and DER(v) to ḟvi (t)+, and
when v is equal to fvi (t) and DER(v) to ḟvi (t)−, denoted with fi(t), ḟi(t)+ |=p pder and fi(t), ḟi(t)− |=p pder
(when ḟi(t) is defined this means that fi(t), ḟi(t) |=p pder).

Finally, we can define the semantics of HRELTL:

• 〈f, I〉, i |= p iff 〈f, I〉, i |=p p;

• 〈f, I〉, i |= ¬φ iff 〈f, I〉, i 6|= φ;

• 〈f, I〉, i |= φ ∧ ψ iff 〈f, I〉, i |= φ and 〈f, I〉, i |= ψ;

• 〈f, I〉, i |= X φ iff there is a discrete step at i (Ii = Ii+1), and 〈f, I〉, i+ 1 |= φ;

• 〈f, I〉, i |= φ U ψ iff, for some j ≥ i, 〈f, I〉, j |= ψ and, for all i ≤ k < j, 〈f, I〉, k |= φ;

• 〈f, I〉, i |= B∼cφ iff, for some j ≥ i, Ij = Ij+1 = [t, t] and 〈f, I〉, j |= φ and, for all i ≤ k < j, 〈f, I〉, k 6|= φ
and for all t′ ∈ Ii, t− t′ ∼ c;

• 〈f, I〉, i |= C∼cφ iff, for some j ≤ i, Ij = Ij+1 = [t, t] and 〈f, I〉, j |= φ and, for all j < k ≤ i, 〈f, I〉, k 6|= φ
and for all t′ ∈ Ii, t′ − t ∼ c.

B.1.3 Examples

The following formulas are examples of expressions with time-until: G(p → B≤10q): always the maximum delay
between p and the next q is 10 time units; B≥5p ∧ G(p → B=10p): p happens exactly every 10 time units after an
initial offset of 5 time units.

B.2 Abstract syntax and semantics of the system specification
A component S is described with a set VS of ports, which are the variables representing the relevant information of
the component that are visible from outside it. An implementation of a component S is defined as a subset of traces
over VS , i.e., a subset of ΠVS . An environment of S is also defined as a subset of ΠVS (since VS are the the variables
at the interface of S).

A connection γ over a set Sγ of components defines the possible interaction of the components. The semantics
JγK of a connection is defined as a subset of traces over

⋃
S∈Sγ VS , i.e. JγK ⊆ Π⋃

S∈Sγ VS
.

A decomposition of a component S is is pair ρ = 〈Subρ, γρ〉 where:

• Subρ(S) is a set of subcomponents such that Subρ(S) 6= ∅ and S 6∈ Subρ(S),

• γρ(S) is a connection over {S} ∪ Subρ(S).

The implementation of a decomposed component S consists of the composition of the implementations of its
sub-components Subρ(S). Namely, it is given by all the traces that are compatible with the subcomponents and
their connection. Formally, if for every S′ ∈ Subρ(S), IS′ is the implementation of S′, the implementation IS of
S induced by the decomposition ρ is defined as {π ∈ ΠVS | there exists πS′ ∈ IS′ for every S′ ∈ Subρ(S) such
that π ×

⊗
S′∈Subρ(S) πS′ ∈ Jγρ(S)K}. Similarly, the environment of a subcomponent U ∈ Subρ(S) is composed

by the environment of S and by the sibling subcomponents of S. Formally, if ES is the environment of S, the
environment EU of U induced by the decomposition ρ of S is defined as {πU ∈ ΠVU | there exists πS′ ∈ IS′ for every
S′ ∈ Subρ(S) \ {U} and π ∈ EU such that π ×

⊗
S′∈Subρ(S) πS′ ∈ Jγρ(S)K}.

A system is defined by a tree of components. The root of the tree is called the system component. The leafs of
the tree are called atomic (or basic or primitive) components. The tree structure is given by the decomposition of each
non-atomic component. Thus, if we consider Sub∗ as the transitive closure of the function Sub, then S 6∈ Sub∗(S)
for any S in the system architecture.

Note that we avoid to distinguish between component type and component instances to simplify the notation.
Actually, the subcomponents of a component type may be instances of the same component type and the system is a
component instance. We simply see two component instances as two distinct components with the same structure and
renamed ports and subcomponents.

Given a component S, a contract for S is a pair 〈A,G〉 of assertions over VS representing respectively an as-
sumption and a guarantee for the component. Let C = 〈A,G〉 be a contract of S. Let I and E be respectively an
implementation and an environment of S. We say that I is a implementation satisfying C iff I ∩ JAK ⊆ JGK. We
say that E is an environment satisfying C iff E ⊆ JAK. We denote with Imp(C) and with Env(C), respectively, the
implementations and the environments satisfying the contract C.

Two contracts C and C ′ are equivalent (denoted with C ≡ C ′) iff they have the same implementations and
environments, i.e., iff Imp(C) = Imp(C ′) and Env(C) = Env(C ′).

Contracts are used to specify the assumptions and guarantees of components in a system architecture. We denote
with ξ(S) the contracts of the component S.

Since the decomposition of a component S into subcomponents induces a composite implementation of S and
composite environment for the subcomponents, it is necessary to prove that the decomposition is correct with regards
to the contracts. In particular, it is necessary to prove that the composite implementation of S satisfies the guarantee of
S’s contracts and that the composite environment of each subcomponent U satisfies the assumptions of U ’s contracts.
We perform this verification compositionally only reasoning with the contracts of the subcomponent independently
from the specific implementation of the subcomponents or specific environment of the composite component.

Given a component S and a decomposition ρ = 〈Sub, γ〉, a set of contracts C ⊆
⋃
S′∈Sub(S) ξ(S

′) is a refinement
of C, written C ≤ρ C, iff the following conditions hold:

1. for any implementation I of S induced by the implementations {IS′}S′∈Sub(S) of the sub-components of S and
the decomposition ρ, if, for all S′ ∈ Sub(S), for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈ Imp(C ′), then I ∈ Imp(C) (i.e.,
the correct implementations of the sub-contracts form a correct implementation of C);

2. for every subcomponent S′′ of S, for every contract C ′′ ∈ ξ(S′′) ∩ C, for any environment E′′ of S′′ induced
by the decomposition ρ, the environment E of S and the implementations {IS′}S′∈Sub(S)\{S′′} of the sub-
components of S, if E ∈ Env(C) and, for all S′ ∈ Sub(S) \ {S′′}, for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈ Imp(C ′),
then E′′ ∈ Env(C ′′) (i.e., for each sub-contract C ′′, the correct implementation of the other sub-contracts and
a correct environment of C form a correct environment of C ′′).

C Patterns
The Othello language is an expressive and complex language. This can be a problem for a user non specifically trained
with the formal languages. On one side, it is possible to write contracts that do not represent the wanted requirement.
On the other side, it can happen to write a specification that represents a unnecessary hard satisfiability problem.

For this reason, we list here several constraint patterns, mostly inspired by the SPEED [SPE] and CESAR [CES]
projects. The list is the result of an analysis of the use cases developed so far both internally and with our partners in
Safecer [Saf] and Forever [FoR] projects. With a few exceptions all those realistic contracts can be expressed using
only these patterns.
P01: Initial condition

The condition that must hold in the initial state of the system. It is a common mistake to write such constraint
instead of always condition.

condition

P02: Invariant
A good condition will always hold (typically the negation of condition represents some bad state).

always condition

It is equivalent to the CESAR pattern F3.

P03: Bounded Delay
Each time a certain event has occurred, another event will occur within a minimum delay and a maximum delay.
Very useful to express reactions to signals (e.g. a safe state is entered each time an error has occurred).

always (event1 implies (
(time_until(event2) >= interval_lower_bound) and
(time_until(event2) <= interval_upper_bound)
))

It is equivalent to the CESAR pattern R3: Delay between event1 and event2 within interval

P04: Assured Reaction
If a certain event has occurred, another event will eventually occur. Used in discrete time models.

always (event1 implies [not] in the future event2)

Analogue to the CESAR pattern F1: whenever event1 occurs event2 [does not] occur[s]

P05: Timed Reaction
Equivalent to Bounded Delay with 0 as lower bound, listed here because it is commonly needed.

always (event1 implies [not] time_until(event2) <= interval_upper_bound)

Analogue to CESAR pattern F17.

Combination of patterns
Several times there will be the need to use more than one pattern in the same assertion. For achieving this, just
connect them together through conjuction or disjunction:

pattern1 (and | or)
pattern2 (and | or)
...
patternN

The following provides a reference sheet.

P01: Initial condition

condition

P02: Invariant

always condition

P03: Bounded Delay

always (event1 implies (
(time_until(event2) >= interval_lower_bound) and
(time_until(event2) <= interval_upper_bound)
))

P04: Assured Reaction

always (event1 implies [not] in the future event2)

P05: Timed Reaction

always (event1 implies [not] time_until(event2) <= interval_upper_bound)

Combination of patterns

pattern1 (and | or)
pattern2 (and | or)
...
patternN

7As a technical note, notice that it not possible to express in Othello this CESAR pattern with a lower bound different from 0. The semantic of
CESAR would be that event2 must occur during the interval and can occur before it. However, the current Othello language would force the event
to not occur before the specified interval (as in Bounded Delay)

	Introduction
	Input language
	Components
	Time domains
	Hybrid time domain limitations
	Discrete time domain limitations
	Timed domain limitations

	Interface
	Ports
	Parameters
	Operations
	Defines
	Contracts
	Assertion

	Refinement
	Refinement language
	Subcomponents
	Connections
	Constraints
	Behaviour
	Assertion
	Validation Properties
	Asynchronous vs. Synchronous Refinement
	Contracts refinement

	Constraint language

	Verification of Contracts Refinement
	Integration with nuXmv and HyComp for Compositional Modeling and Verification
	Notes regarding the integration with HyComp

	Advanced features
	Verification of Receptiveness
	Contract-based Safety Analysis

	Parametrized Ocra
	Architectural parameters
	Definition
	Instantiating architectural parameters
	Parameter assumptions

	Parametrized Language
	Iterators
	Guard
	Big or
	Big and
	Count iterator
	Parametric Ports
	Parametric Subcomponent
	Parametric connection
	Parametric Contracts
	Parametric Contract Refinement

	Interactive Commands of OCRA
	OCRA Command Line Options
	Concrete syntax
	Othello System Specification
	Othello Port Types
	Boolean
	Enumeration Types
	Word
	Integer
	Real
	Clock
	Continuous
	Array
	Noncontinuous annotation
	Uninterpreted functions

	Othello constraints

	Abstract syntax and semantics
	Abstract syntax and semantics of HRELTL constraints
	Abstract syntax
	Semantics
	Examples

	Abstract syntax and semantics of the system specification

	Patterns

