
xSAP
The eXtended Safety Assessment Platform

Version 1.4

xSAP User Manual

by
Fondazione Bruno Kessler
Embedded Systems Unit

This document is part of the distribution package of the XSAP toolset.

Copyright © 2019 by FBK

Contents

Contents 2

1 Introduction 6

2 Methodological Overview 8
2.1 A Formal Approach to System Design . 8
2.2 Tool support with nuXmv and xSAP . 10

3 Fault Extension 11
3.1 Manual Fault Extension . 11

3.1.1 XML Format . 11
3.2 Automated Fault Extension . 12

3.2.1 Fault Extension Instructions . 13
3.2.2 Fault Slice . 14
3.2.3 Fault modes . 14
3.2.4 Global Dynamics Model . 16

3.3 Common Cause . 16
3.4 The Fault Extension Instruction language . 17
3.5 FEI semantics . 20

3.5.1 Common Causes . 20
3.6 The Faults Library . 21

3.6.1 Effect Model . 23
3.6.2 Local Dynamics . 33

4 Safety Assessment 35
4.1 Declaring the Fault Variables . 35
4.2 Fault Tree Generation . 36

4.2.1 Latent Faults . 37
4.3 Failure Modes and Effect Analysis . 37
4.4 MTCS Analysis . 38
4.5 Common Cause Analysis . 38

5 TFPG Analysis 40
5.1 Timed Failure Propagation Graphs . 40

5.1.1 Terminology . 40
5.1.2 TFPG Definition . 41
5.1.3 Semantics . 42

2

5.2 Reasoning Tasks . 43
5.2.1 Behavioral Validation . 43
5.2.2 Synthesis . 44
5.2.3 Tightening . 45
5.2.4 Possibility, Necessity, Consistency, and Activability 45
5.2.5 Refinement . 45
5.2.6 Diagnosis . 45
5.2.7 Filtering . 46

5.3 TFPG Formats . 46
5.3.1 Textual Format . 46
5.3.2 XML Format . 49

6 Fault Detection And Isolation 53
6.1 Diagnosability Analysis . 53
6.2 Generation of minimum observables set . 54
6.3 Synthesis of diagnoser . 54
6.4 Effectiveness analysis . 54
6.5 Files format . 55

6.5.1 Observables file . 55
6.5.2 Alarm Specification file . 55

7 Triple Generator Example 57
7.1 Informal Description . 57

7.1.1 The Plant . 57
7.1.2 Controller behavior . 58
7.1.3 System Requirements . 58

7.2 SMV modeling . 59
7.3 Concrete example of Fault Extension . 63

7.3.1 Nominal Model . 63
7.3.2 Fault Extension Instruction . 65
7.3.3 Modules and Module Instances in FEI 66
7.3.4 Properties . 66
7.3.5 Formal properties . 67
7.3.6 Choose Fault Templates . 67
7.3.7 Result of Fault Extension . 68
7.3.8 Safety Assessment . 69
7.3.9 Adding Common Cause . 73
7.3.10 Adding Fault Probability . 76
7.3.11 Latent Faults . 77

7.4 TFPG Analysis . 77
7.4.1 Associations file . 77
7.4.2 Synthesis . 78
7.4.3 Behavioral Validation . 79
7.4.4 Tightening . 80
7.4.5 Statistics Information . 81
7.4.6 Possibility, Necessity, Consistency and Activability 81
7.4.7 Diagnosis . 83

3

7.4.8 Refinement . 84
7.4.9 Filtering . 84

7.5 Fault Detection and Isolation . 86
7.5.1 Diagnosability analysis . 86
7.5.2 Minimum observables set analysis . 87
7.5.3 Synthesis of a diagnoser . 88
7.5.4 Effectiveness analysis . 88

8 Conclusions and Future Directions 90

References 91

A Installation 93
A.1 Prerequisites . 93

A.1.1 Platform-independent . 93
A.1.2 Microsoft Windows (64 bit and 32 bit) 93
A.1.3 Linux 64 bit . 94

B Syntax Directed Editor 96

C Script Guide 97
C.1 Model Extender . 97
C.2 Fault Tree Analysis . 98
C.3 FMEA Table Analysis . 98
C.4 MTCS Analysis . 99
C.5 Diagnosability . 100

C.5.1 Diagnosability Analysis . 100
C.5.2 Generation of Minimum Observables Set 101

C.6 FD Synthesis . 101
C.7 TFPG . 102

C.7.1 Format Conversion . 102
C.7.2 TFPG Generation . 102
C.7.3 TFPG Synthesis . 103
C.7.4 TFPG Behavioral Validation . 103
C.7.5 TFPG Tightening . 104
C.7.6 TFPG Effectiveness Validation . 104
C.7.7 TFPG Statistics Information Extraction 105
C.7.8 TFPG Properties Check . 105
C.7.9 TFPG Scenario Diagnosis . 106
C.7.10 TFPG Refinement Check . 106
C.7.11 TFPG Filtering . 106

C.8 Viewers . 107
C.8.1 Trace viewer . 107
C.8.2 Fault Tree viewer . 107
C.8.3 FMEA Table viewer . 108
C.8.4 TFPG viewer . 108

4

D Command Guide 109
D.1 Invoking xSAP . 110
D.2 Properties vs TLEs . 111
D.3 Automated Fault extension . 112
D.4 Printing the Fault Variables . 113
D.5 Computing Monotonic Fault Tree . 114
D.6 Computing Non Monotonic Fault Tree . 124
D.7 Computing FMEA Table . 126
D.8 Computing MTCS . 129
D.9 Checking diagnosability . 130
D.10 Minimum observables set analysis . 131
D.11 Synthesizing FD components . 132

5

Chapter 1

Introduction

The design of complex systems requires the ability to analyze, in additional to functional cor-
rectness, also the way faults are dealt with. This approach, known as safety assessment, relies
on the definition of possible faults of a system, and results in the construction of important
artifacts such as Fault Trees and FMEA tables.

Purpose of this document is to illustrate the usage and underlying principles of xSAP
(eXtended Safety Assessment Platform). xSAP is a tool for the formal analysis and safety
assessment of (complex) systems. xSAP supports a formal approach, based on principles of
symbolic model checking. With respect to a model checker, xSAP provides the following
functionality:

Fault Extension: starting from a nominal model, describing the behaviour of a system with-
out faults, an extended model is produced, that also contains behaviours in the presence
of faults. Such extended model can be modeled manually (manual fault extension –
compare Section 3.1) or automatically, starting from a library of faults and a definition
of the faults to be injected into the nominal model (automated fault extension – compare
Section 3.2).

Fault Tree Analysis: given an extended model, and a specific property, xSAP produces
the fault trees collecting all the minimal cut sets that can result in a property violation.
This technique is classified as a top-down analysis – compare Section 4.2.

FMEA tables: given an extended model, xSAP produces FMEA tables, describing which
properties are violated as a consequence of the occurrence of which faults. This technique
is often referred to as a bottom-up technique, proceeding from the faults to the top
properties – compare Section 4.3.

At the core, xSAP relies on the nuXmv model checker [15], from which it inherits the
modeling language. Within xSAP, the functional verification capabilities of nuXmv are
extended to deal with model extension and safety assessment.

xSAP is designed to provide the following advantages. First, xSAP supports a method-
ology that allows for a tight integration between the design and the safety teams. Second, it
automates (some of) the activities related both to the verification and to the safety analysis
of systems in a uniform environment. Third, the use of the platform is compatible with an
incremental development approach, based on iterative releases of the system model at different
levels of detail.

6

http://nuxmv.fbk.eu/

History of xSAP xSAP is developed and maintained by the Embedded Systems Unit of
FBK. xSAP is a reimplementation of the FSAP/NuSMV-SA platform. FSAP/NuSMV-
SA (Formal Safety Analysis Platform) was developed since 2001, with the support of the Eu-
ropean Union, within several projects in the areas of formal verification and safety analysis:
the ESACS project, the ISAAC Project, and the MISSA Project. The techniques underly-
ing FSAP/NuSMV-SA have been subsequently applied in several projects funded by the
European Space Agency: COMPASS1, AUTOGEF2, FAME3, and HASDEL4.

Structure of the document This manual is organized as follows:

• Chapter 2 describes the overall process supported by xSAP.

• Chapter 3 explains the Fault Extension methodology.

• Chapter 4 presents the available forms of safety analysis.

• Chapter 6 gives and overview of the Fault Detection and Isolation analysis.

• Chapter 7 shows a complete example of use.

• Chapter 8 draws some conclusions and outlines the directions of future development.

The appendix contains the following information:

• Chapter A specifies the necessary hardware/ software configuration needed to run the
xSAP toolset and the required installation steps.

• Chapter B describes the Syntax Directed Editor for the fault extension instruction lan-
guage.

• Chapter C describes the available scripts provided by xSAP.

• Chapter D describes the available commands.

This document is not self contained, and assumes that the reader is familiar with nuXmv.
The interested reader is referred to [20]. A technical description of the engines underlying
nuXmv and xSAP can be found in [16, 6].

1http://www.compass-toolset.org
2http://autogef-project.fbk.eu
3http://fame-project.fbk.eu
4http://hasdel-project.fbk.eu

7

http://es.fbk.eu/
http://www.fbk.eu/
http://www.esacs.org/
http://www.cert.fr/isaac/
http://www.cert.fr/isaac/
http://www.compass-toolset.org
http://autogef-project.fbk.eu
http://fame-project.fbk.eu
http://hasdel-project.fbk.eu

Chapter 2

Methodological Overview

2.1 A Formal Approach to System Design

We consider a unified process that covers the modeling and the verification of complex and
safety critical systems. The process, depicted in Figure 2.1, aims to support the early design
phases by developing systems at an architecture level.

Requirements Validation: In order to ensure the quality of requirements, they can be
validated independently of the system. This includes both property consistency (i.e.,
checking that requirements do not exclude each other), property assertion (i.e., checking
whether an assertion is a logical consequence of the requirements), and property possi-
bility (i.e., checking whether a possibility is logically compatible with the requirements).
Altogether these features allow the designer to explore the strictness and adequacy of
the requirements. Expected benefits of this approach include traceability of the require-
ments and easier sharing between different actors involved in system design and safety
assessment. Furthermore, high-quality requirements facilitate incremental system devel-
opment and assessment, reuse and design change, and they can be useful for product
certification.

Functional verification: Analyzing operational correctness is the first step to be performed
during the system development lifecycle. It consists in verifying that the system will
operate correctly with respect to a set of functional requirements, under the hypothesis
of nominal conditions, that is, when software and hardware components are assumed
to be fault-free. One particular instance of this general model-checking problem that is
specifically supported by the toolset is deadlock checking, i.e., ensuring that the system
does not give rise to terminating computations. This is usually required for reactive
systems. Moreover the toolset offers the feature to interactively simulate the execution
of the system.

Fault Extension: In general the behavior of a critical system is modeled in two parts: nom-
inal and faulty. The former describes the system when it is not affected by any faulty
behavior, while the second extends the nominal one with the possibility to have some
undesirable behavior (e.g. a battery does not provides electricity, a link becomes bro-
ken, etc). The Model Extension permits to keeps disjoint the nominal and the faulty
behavior of the system such that is possible to have a greater verification coverage. Fault

8

Faults	
Modes	

Defini0on	

Faults	 	
Templates	

Nominal	
Model	

Counterexamples	
Traces	 Fault	 Trees	 FMEA	 Tables	 FDIR	

Effec0veness	

Extended	
Model	

Input	

Library	

Output	

Figure 2.1: Overview of the methodology

extension can be carried out manually (compare Section 3.1) or automatically (compare
Section 3.2)1.

Safety and Dependability Analysis [22, 21, 24, 23]: Analyzing system safety and de-

1Figure 2.1 depicts the automated fault extension mechanism, which takes as input fault templates taken
from a library, and set of fault extension instructions that define how the faults are to be injected into the
nominal model

9

pendability is a fundamental step that is performed in parallel with system design and
verification of functional correctness. The goal is to investigate the behavior of a system
in degraded conditions (that is, when some parts of the system are not working properly,
due to malfunctions) and to ensure that the system meets the safety requirements that
are required for its deployment and use. Key techniques in this area are (dynamic) fault
tree analysis, (dynamic) Failure Modes and Effects Analysis (FMEA), fault tolerance
evaluation, and criticality analysis.

Fault Detection and Identification Analysis: Fault tolerant systems often implement some
mechanisms to detect, identify and recover from, faults – i.e. an FDIR (Fault Detection,
Identification and Recovery) sub-system. Fault Detection and Identification (FDI) is
carried out by dedicated modules, called FDI components, running in parallel with the
system. The detection task is the problem of understanding whether a component has
failed, whereas the identification task aims to understand exactly which fault occurred.
Typically, faults are not directly observable and their occurrence can only be inferred by
observing the effects that they have on the observable parts of the system. FDI compo-
nents take as input sequences of observations (made available by sensors) and trigger a
set of alarms in response to the occurrence of faults.

2.2 Tool support with nuXmv and xSAP

The process is supported by two tools: nuXmv and xSAP. nuXmv mainly targets the phases
of requirements analysis, design and verification. xSAP supports the phases of fault extension
and safety assessment.

The steps of the methodology covered by functionalities of the nuXmv model checker are
“traditional” formal verification steps. nuXmv is an extension of the NuSMV model checker
along two key directions: it has a much stronger engine to deal with finite state models, and
allows to deal with infinite state transition systems. The nuXmv model checker [15], that can
be downloaded at the nuXmv webpage (http://nuxmv.fbk.eu/) More details at [15]. In this
section we only present a overview of the nuXmv, and refer the reader to the nuXmv User
Manual [20] for details.

xSAP builds upon nuXmv in the following way. In xSAP the nominal models, as well as
the models resulting from fault extension, can be expressed in the language of nuXmv, which
is, modulo minor variations, the language of NuSMV.

The properties used to represented the behavior of the system, be it nominal or extended,
are written in form of temporal properties (either as invariants, LTL, or CTL) in the nuXmv
language.

nuXmv provides several functionalities, that are also available in xSAP. These include
functional verification, simulation, deadlock checking.

10

http://nuxmv.fbk.eu/

Chapter 3

Fault Extension

Given a model describing the nominal behaviour of a system, fault extension is a process
that, based on a specification of the possible faults, returns a model whose behaviour takes
into account also faulty behaviors. xSAP allows the user to handle the fault extension phase
manually or automatically.

Manual fault extension is carried out through the manual definition of a Fault Modes file
(compare Section 3.1).

On the other hand, the automated fault extension (compare Section 3.2) relies on a set
of Fault Extension Instructions (FEI), and a library of faults, defining fault effects and fault
dynamics (compare Section 3.2.1). The FEI instructs how the faults should be injected into
the nominal model. As a result of the extension, the nominal model is extended with faulty
behaviors and a set of fault variables that enable such behaviors.

In a nutshell, in automated fault extension, the set of fault variables is automatically added
to the nominal model by the tool, according to the FEI. In manual fault extension, instead,
the user has to declare a set of existing variables in the (manually created) extended model,
to be the set of fault variables. The set of fault variables is used by xSAP to carry out the
subsequent analyses – compare Chapter 4.

Once the fault extension phase is complete, it is possible to list the set of fault variables
using the shell command show fault variables, as shown in Appendix D.4.

3.1 Manual Fault Extension

Manual extension of a nominal model is possible through the execution of specific commands
available in the tool’s shell. The user needs to write a Fault Modes file (xml format) which
must be specified when invoking the tool (see section D.1).

Once the Faults Mode file has been loaded properly, several analyses can be performed,
for instance Fault Tree Analysis (see Section 4.2).

3.1.1 XML Format

The Fault Modes file used in manual fault extension must be compliant with the xsd provided
in file data/schema/failure-modes.xsd.

The root element, named <compass>, consists of the following elements:

• <fmlist>: required list of faults modes

11

• <cclist>: optional list of common causes

• <obslist>: optional list of observables1

Faults modes can be defined using the tag <fm> and are required to have the attributes
name and nominal value. Optionally, fault modes can be associated to a probability (attribute
probability) and to a history variable (attribute history – see Section 4.1 for additional
details). In case we want to define a latent fault mode (compare Section 4.2.1), we need to
add a child element named <latent> containing the related probability as an attribute.

If common causes are present (compare Section 4.5), they are introduced by element <cc>
and must have an attribute name representing the name and an attribute fm representing the
fault mode they refer to; in addition, it is possible to specify a proability through the attribute
probability. Each common cause is associated to at least one mode (identified by the child
element <cc mode>) which requires to have specified a name and an interval (represented
through attributes low and high) within the failure will be raised.

An example of valid Fault Modes file is depicted in figure 3.1.

1 <?xml v e r s i o n =”1.0”?>
2 <compass>
3 <f m l i s t>
4 <fm name=”SC.G3 . Gen StuckOff . mode i s s tuckAt Of f ”
5 nominal va lue=”FALSE” p r o b a b i l i t y=”0”></fm>
6 <fm name=”SC.G2 . Gen StuckOff . mode i s s tuckAt Of f ”
7 nominal va lue=”FALSE” p r o b a b i l i t y=”0”></fm>
8 <fm name=”SC.G1 . Gen StuckOff . mode i s s tuckAt Of f ”
9 nominal va lue=”FALSE” p r o b a b i l i t y=”0”></fm>

10 </f m l i s t>
11 <c c l i s t >
12 </ c c l i s t >
13 <o b s l i s t >
14 </o b s l i s t >
15 </compass>

Figure 3.1: Example of Fault Modes file

3.2 Automated Fault Extension

The automatic extension of a nominal model is possible through the execution of specific com-
mands available in the tool’s shell, or through a script which simplifies the whole process. The
user needs to write a FEI file (human-readable textual and xml formats are both supported),
and then the FEI file is processed when carrying out the extension.

The fault extension process enriches the model in two directions:

• it associates a faulty behaviour model with an instance of a nominal component imple-
mentation;

1This tag is present for historical reasons, and not currently used

12

Figure 3.2: Automated Fault Extension flow

• it defines the dynamics controlling the occurrence of a faulty behavior in the respective
component.

The process consists in extending a set of NCs (nominal components) and passes through
the execution of the Fault Extender tool, which takes as inputs:

• The set of Nominal Components

• The Fault Library (see 3.6)

• The Fault Extension Instruction (FEI) containing a description of the way each NC should
be extended (see section 3.4).

The Fault Extender produces the Extended Model as output, i.e. a SMV file containing the
Nominal Model automatically extended with the faulty behavior.

The steps of the process are explained in greater details below.

3.2.1 Fault Extension Instructions

The language for fault extension is built on the following concepts.
A FE is a set of Nominal Components (NC) each associated with its set of Fault Slices.
Each Fault Slice contains the fault modes and their dynamics which affect a slice of the NC

variables.
Formally, a FE is a set:

FE := {<NC, { FS } >}
FS := <AS, {<EM, LDM>} , GDM>

where:

NC a nominal component,

13

FS is a fault slice,

where a FS is composed of

AS is a non-overlapping subset of the symbols of NC which are affected by the fault

EM is an Effect Model

LDM a Local Dynamics Model

GDM is a Global Dynamics Model

3.2.2 Fault Slice

A Fault Slice (FS) is a set of Fault Modes with associated Global Dynamics Model and Affected
Symbols (AS).

Formally:

FS := <AS, {<EM, LDM>} , GDM>

A FS applies its effects to a subset AS of the set of symbols of a NC. Intuitively, FSs allows
for composing Fault Modes which may be thought as basic faults, to build more complex
faults.

All Fault Slices of a NC are implicitly in cross-product, each operating independently on
its slice over NC’s variables.

3.2.3 Fault modes

One fault mode (fm) is made of:

• One Effects Model (EM)

• One Local Dynamics Model (LDM)

One fm has two modalities: nominal and fault.

Effect Model (EM)

Effects are constraints over a set of variables which are intended to be bounded to correspond-
ing affected symbols AS (variable or defines) in the NC, whose values received through the FS

interface. Each EM determines what are the effects of entering and during the fault mode.

nominal fault

entering

during

Figure 3.3: States and transitions of an EM

The effect can be function of the internal state of the EM. Predicates is nominal and
is fault are available in EM to tell which is the current/next mode.

14

An EM applies its effects on an AS by writing to a corresponding output variable (OV). The
EM can read the value of the AS through a corresponding input value. If two or more EMs write
to the same AS, all the corresponding OVs must have the same type (which is type of the AS).

Local Dynamics Model (LDM)

LDM models how the fm moves between the nominal and fault modes. One or more fault events
can be defined, and transitions between the modalities are defined. Like for EMs, predicates
is nominal and is fault are available in EM to tell which is the current/next mode.

Interface of a fm

The fm interface results from the combination of the EM and the LDM.
The fm Interface is nominally made of:

• One or more input values, which carry the value of corresponding variables/defines in
the NC for binding.

• One or more output variables which are constrained in the EM, each overwriting a corre-
sponding input variable/define (in AS) in the NC passed through a corresponding input
value.

• One or more additional read-only input parameters for constants, or other values coming
from the NC.

• One or more template parameters which are resolved by string substitution.

• One or more events, defined and used in the EM and LDM.

Instantiation of a fm

One EM and one LDM are taken from the respective generic libraries, and associated. This
requires that all template strings are resolved. The fm construction produces a fm which
needs to be contextualized.

fm

NC

1

2

3

4 5

Figure 3.4: Binding NC’s content into one fm

15

The fm interface can take values from constants (1), from the NC’s internals (2), and from
the NC’s interface (3). The fm Interface can output (constrain) data and events to the internal
state of NC (4) or to its interface (5).

All fms belonging to a FS are associated with one NC. This requires that:

• All input variables/defines which have to be bounded in the NC are associated with the
corresponding output variables of the fm.

• All events of the fm which need to be constrained by the NC are connected to the corre-
sponding values in the NC (NC’s parameters and local symbols).

• All other input values are resolved, either attached to a constant value, or to values in
the NC (NC’s parameters and local symbols).

• All remaining template strings are resolved.

3.2.4 Global Dynamics Model

GDM defines the dynamics of composition of several fm’s of each FS.
Two or more instantiated fms can be composed to define more complex behaviours.

1. A set of instantiated fms are chosen.

2. Transitions among them are defined.

3. New events may be added at this stage to be used as triggers in transitions.

In a FS’s GDM the nominal modes of all instantiated fms are collected in one unique nominal
mode, to compose a daisy-shaped automaton, whose leaves are the fail modes.

In Figure 3.5, three fms are composed, each has its LDM (in gray), but in addition also
transitions between fail2 and fail1, and between fail2 and fail3 are defined (in blue).
Those transitions can be labeled either with:

• Events which exist in the target fm, or

• new events created at this stage.

In the example e1 is an event occurring in the fm fail1. new ev is instead a newly created
event.

3.3 Common Cause

A fault extension specification is made of one or more module’s extensions, and optionally by
one or more Common Causes (CCs).

Each CC represents a set of failures, possibly occurring in different components and different
times, for which the assumption of fault independence does not hold. For example, failure
of one power generator may happen standalone, or may happen as a consequence of a CC. In
the latter case, the CC may specify that two generators may fail, and that the two failures are

16

nominal

fail1

fail2

fail3

new_ev

e1

Figure 3.5: Global Dynamics Model among three fms

dependent, e.g., the first generators fails, and then the second generators fails between 1 and
3 discrete time-steps as a consequence of the common cause.

Each CC specifies an initiating event (the common cause event, which is distinct from the
component fm themselves) and the set of the component fm with the corresponding timings
(specified as intervals). Each interval specifies the time bounds (expressed relative to the time
of the initiating event) at which the fm can take place.

3.4 The Fault Extension Instruction language

FEI is the way a user specifies how a Nominal Model has to be extended with faulty behaviours.
FEI can be specified either with a XML specification, or in a human-readable textual

format.
The EBNF-like grammar of the FEI is presented below. A complete example of usage of

FEI is presented in Section 7.3.2.

1

2 <dot> : := ' . '
3 <colon> : := ' : '
4 <semi−colon> : := ' ; '
5 <comma> : := ' , '
6 <lpar> : := ' ('
7 <rpar> : := ') '
8 <lbra> : := '{ '
9 <rbra> : := '} '

10 <rw−op−l t> : := ”<<”
11 <rw−op−gt> : := ”>>”
12 <eq−op> : := '= '
13 <range−op> :== ” . . ”
14 <trans−begin> : := ”−[”
15 <trans−end> : := ”]−>”

17

16

17 <l i n e−comment> : := −− .∗ \n
18 <mul t i l i n e−comment> : := /−− [. \ n]∗ −−/
19

20 <id> : := [A−Za−z] [A−Za−z 0−9−]∗
21 <wildcard−id> : := [A−Za−z ∗ \ [\] ?] [A−Za−z 0 −9∗\ [\]?−]∗
22

23 < f u l l −id> : := <id> | <id> <dot> < f u l l −id>
24 <wildcard−f u l l −id> : := <wildcard−id> | <wildcard−id> <dot> <wildcard−f u l l −id>
25

26 <d i g i t s> : := [0−9]+
27 <number> : := (+|−)? <d i g i t s>
28

29 <f l o a t−number> : := <number> <dot> (<d i g i t s >)?
30 <exp−number> : := <f l o a t−number> (e |E) <number>
31 <r ea l−number> : := <f l o a t−number>
32 | <exp−number>
33

34 # −−
35 <s t a r t> : := <f au l t−extens ion>
36

37

38 # −−
39 <f au l t−extens ion>
40 FAULT EXTENSION <id>
41 (<mod−extens ion>)+
42 (<common−causes >)?
43

44

45 # −−
46 # Fault s l i c e s and modes from here
47 # −−
48 <mod−extens ion> : :=
49 EXTENSION OF MODULE < f u l l −id>
50 (< i n s tance s >)?
51 <s l i c e>+
52

53 <s l i c e > : :=
54 SLICE <s l i c e −id> (< i n s tance s >)? AFFECTS <var− l i s t > WITH
55 <f au l t−mode>+
56 <g loba l−dynamics>?
57

58 <i n s tance s> : :=
59 FOR INSTANCES <wildcard−f u l l −id− l i s t >
60

61 <f au l t−mode> : :=
62 MODE <mode−id> (p robab i l i t y−value−mode)? <colon>
63 < l o c a l−dynamics−model−id> <e f f e c t> <semi−colon>
64

65 <g loba l−dynamics> : :=
66 GLOBAL DYNAMICS
67 <new−event>∗
68 <trans>+
69

70 <new−event> : :=
71 <event−par> <semi−colon>
72

73 <s l i c e −id> : := <id>
74 <mode−id> : := <id>
75

76 < l o c a l−dynamics−model−id> : := <id>
77

78 <e f f e c t> : :=
79 <e f f e c t−id> <lpar> <par− l i s t > <rpar>
80

81 <e f f e c t−id> : :=
82 <id>
83

84 <trans> : :=
85 TRANS <trans−mode−id>

18

86 <trans−begin> < f u l l i d >? <trans−guard>? <trans−end>
87 <trans−mode−id> <semi−colon>
88

89 <trans−guard> : :=
90 when <s imple−expres s i on>
91

92 <trans−mode−id> : :=
93 | <mode id>. nominal
94 | <mode id>. f a u l t
95 | nominal
96

97 <var− l i s t > : :=
98 <id>
99 | <id> <comma> <var− l i s t >

100

101 <par− l i s t > : :=
102 <par>
103 | <par> <comma> <par− l i s t >
104

105 <par> : :=
106 <data−par>
107 | <event−par>
108 | <template−par>
109

110 <data−par> : :=
111 data <id> <rw−op−expr>?
112

113 <event−par> : :=
114 event <id> <rw−op−expr>?
115

116 <rw−op−expr> : :=
117 | <rw−op−l t> <s imple−expres s ion>
118 | <rw−op−gt> <id>
119

120 <template−par> : :=
121 template <id> <eq−op> <id>
122

123 <wildcard−f u l l −id− l i s t > : :=
124 <wildcard−f u l l −id>
125 | <wildcard−f u l l −id> <comma> <wildcard−f u l l −id− l i s t >
126

127

128 # −−
129 # Common cause from here
130 # −−
131 <common−causes> : :=
132 COMMON CAUSES
133 (<common−cause>)∗
134

135 <common−cause> : :=
136 CAUSE <id> (p robab i l i t y−value−cc)?
137 (<cc−module−modes>)+
138

139 <cc−module−modes> : :=
140 MODULE < f u l l −id>
141 (< i n s tance s >)?
142 (<cc−mode>)+
143

144 <cc−mode> : :=
145 MODE <s l i c e −id><dot><mode−id> <cc−range> <semi−colon>
146

147 <cc−range> : :=
148 WITHIN <d i g i t s> <range−op> <d i g i t s>
149

150 <probab i l i t y−value−mode> : :=
151 <lbra> <r ea l−number> (, l a t e n t : yes | no , l a t en t p rob :< r ea l−number>)?<rbra>
152 | <lbra> prob:< r ea l−number> (, l a t e n t : yes | no , l a t en t p rob :< r ea l−number>)?<rbra>
153

154 <probab i l i t y−value−cc> : :=
155 <lbra> <r ea l−number> <rbra>

19

156 | <lbra> prob:< r ea l−number> <rbra>

3.5 FEI semantics

3.5.1 Common Causes

The specification of CC is made of a set of Cause specifications. Each Cause is made of a
set of fault modes each associated with a (discrete) time interval. The set of fault modes is
partitioned wrt the modules they belong to.

In the example, the FEI contains a single Cause CC1, involving all instances of module
Switch, and different fault modes dynamics for the Generator s.

1 COMMON CAUSES
2 CAUSE CC1
3 MODULE Gene ra to r
4 FOR INSTANCES SC . G1
5 MODE Gen StuckOf f . s t u ckA t O f f WITHIN 0 . . 0 ;
6

7 MODULE Gene ra to r
8 FOR INSTANCES SC .G [2 3]
9 MODE Gen StuckOf f . s t u ckA t O f f WITHIN 1 . . 3 ;

10

11 MODULE Switch
12 MODE Swi tch StuckC lo sed StuckOpen . stuckAt Open WITHIN 2 . . 3 ;
13 MODE Swi tch StuckC lo sed StuckOpen . s t u ckA t C l o s ed WITHIN 3 . . 4 ;

In the example, when fault CC1 occurs, SC.G1 immediately may stuck off, which lead to
having both SC.G2 and SC.G3 fail stuck off after 1 to 3 steps. All Switch are also involved, as
they may stuck to/from stuck open and stuck closed. The example is certainly a bit artificial,
but the intention is use the example to informally present the semantics underlying the CC.

Each MODULE M specification contains a set of references to fault modes which were defined
in the extension of module M . Each fault mode reference is associated with a (discrete) time
interval which is the delay of the occurrence of that fault mode after the Common Cause
happen. For example, fault SC.G1.Gen StuckOff.stuckAt Off may happen instantaneously
(0 steps) after fault CC1 happen, while fault Gen StuckOff.stuckAt Off for instances SC.G2

and SC.G3 may happen non-deterministically 1 to 3 discrete steps after CC1.

Occurrence of a Fault Mode A fault mode may happen here means that after the CC

happen, a fault mode may be not able to happen due to the history and modeling reasons.
For example, suppose a valve may fail by exploding or stucking at closed, and suppose the
GDM does not allow for switching from “exploded” mode to “stuck-at-closed” mode. Now a CC

involving an exploded valve may still happen, although the fault mode “stuck-at-closed” will
never happen as a consequence of the CC.

Multiple instances Each MODULE specification identifies a set of instances (all if instances
are not explicitly identified). Notice that the set of instances of MODULE M is a subset of
the set of extended instances of module M . As for the fault extension, the FOR INSTANCES

specification contains a list of patterns (wildcard) to filter existing names. Empty sets are not
allowed.

20

A module instance m of module M can occur only once in each Common Cause. In the
example SC.G1 involved in MODULE at line 3, and cannot occur in any other MODULE of Cause
CC1.

When Cause’s MODULE specification involves more than one instances, the intended seman-
tics is that the CC involves all specified instances at the same time. For example, MODULE

specification at line 7 involves both SC.G2 and SC.G3. When at time t CC1 happen, in a time
t + ∆ with 1 ≤ ∆ ≤ 3, ∆ ∈ N, all instances SC.G2 and SC.G3 which can enter fault mode
Gen StuckOff.stuckAt Off will fail with that fault mode 2.

Multiple Fault Modes As mentioned, Cause’s MODULE specification allows for multiple
fault modes references. This is the set of fault modes (and their timings) which may follow
the occurrence of the CC. Since all fault modes in a MODULE specification affect the same
instances, constraints are automatically added during the extension to avoid that two or more
incompatible fault modes are activated at the same time. For example, fault modes at lines 12
and 13 may happen for all Switch instances 2 to 3 steps after CC1 occurs 3. The automatically
added constraints avoid a deadlock by constraining the modes not to occur at the same time
step.

3.6 The Faults Library

Name Parameters4 Transitions
Entering During

StuckAtByReference I term next(varout) = next(term) next(varout) = next(term)
StuckAtByReference D5 term next(varout) = term next(varout) = term

StuckAtByValue I term next(varout) = next(term) next(varout) = varout
StuckAtByValue D term next(varout) = term next(varout) = varout

Frozen —– next(varout) = input next(varout) = varout

NonDeterminismByReference Num I
min bound, next(varout) >= next(min bound) & next(varout) >= next(min bound) &
max bound next(varout) <= next(max bound) next(varout) <= next(max bound)

NonDeterminismByReference Num D
min bound, next(varout) >= min bound & next(varout) >= min bound &
max bound next(varout) <= max bound next(varout) <= max bound

NonDeterminismByValue Num I
min bound, next(varout) >= next(min bound) &

next(varout) = varout
max bound next(varout) <= next(max bound)

NonDeterminismByValue Num D6 min bound, next(varout) >= min bound &
next(varout) = varout

max bound next(varout) <= max bound

NonDeterminismByReference Bool —–
next(varout) = FALSE | next(varout) = FALSE |
next(varout) = TRUE next(varout) = TRUE

NonDeterminismByValue Bool —–
next(varout) = FALSE |

next(varout) = varout
next(varout) = TRUE

Conditional I

condition, next(varout) = (next(varout) = (
then term, CONDITION AT ENTRANCE ? CONDITION AT ENTRANCE ?
else term next(then term) next(then term)

: next(else term)) : next(else term))

Conditional D

condition, next(varout) = (next(varout) = (
then term, CONDITION AT ENTRANCE ? CONDITION AT ENTRANCE ?
else term then term then term

: else term) : else term)

ConditionalDualOutputs I

condition, next(varout 1) = (next(varout 1) = (
then term 1, CONDITION AT ENTRANCE ? CONDITION AT ENTRANCE ?
else term 1, next(then term 1) next(then term 1)
then term 2, : next(else term 1)) : next(else term 1))
else term 2 & next(varout 2) = (& next(varout 2) = (

2Assuming there are no other Causes specified for the same instances
3Assuming the GDM allows for switching between modes stuckAt Open and stuckAt Closed, in one or both

directions

21

CONDITION AT ENTRANCE ? CONDITION AT ENTRANCE ?
next(then term 2) next(then term 2)
: next(else term 2)) : next(else term 2))

ConditionalDualOutputs D

condition, next(varout 1) = (next(varout 1) = (
then term 1, CONDITION AT ENTRANCE ? CONDITION AT ENTRANCE ?
else term 1, then term 1 then term 1
then term 2, : else term 1) : else term 1)
else term 2 & next(varout 2) = (& next(varout 2) = (

CONDITION AT ENTRANCE ? CONDITION AT ENTRANCE ?
then term 2 then term 2
: else term 2) : else term 2)

RampDown

decr

next(varout) = input

next(varout) = case

end value ramp mode = RAMPING DOWN : varout - decr;

ramp mode = RAMPING DONE : varout;

esac;

Inverted —– next(varout) = !input next(varout) = varout
StuckAtFixed —– next(varout) = varout next(varout) = varout

RandomByReference —– TRUE TRUE
RandomByValue —– TRUE next(varout) = varout

ErroneousByReference —– next(varout) != next(input) next(varout) != next(input)
ErroneousByValue —– next(varout) != next(input) next(varout) = varout

DeltaOutByReference
delta next(varout) < (next(input) − delta) next(varout) < (next(input) − delta)

| next(varout) > (next(input) + delta) | next(varout) > (next(input) + delta)

DeltaOutByValue
delta next(varout) < (next(input) − delta)

next(varout) = varout| next(varout) > (next(input) + delta)

DeltaInRandomByReference
delta next(varout) >= (next(input) − delta) next(varout) >= (next(input) − delta)

& next(varout) <= (next(input) + delta) & next(varout) <= (next(input) + delta)

DeltaInRandomByValue
delta next(varout) >= (next(input) − delta)

next(varout) = varout
& next(varout) <= (next(input) + delta)

DeltaInErroneousByReference
delta next(varout) >= (next(input) − delta) next(varout) >= (next(input) − delta)

& next(varout) <= (next(input) + delta) & next(varout) <= (next(input) + delta)
& next(varout) != next(input) & next(varout) != next(input)

DeltaInErroneousByValue
delta next(varout) >= (next(input) − delta)

next(varout) = varout& next(varout) <= (next(input) + delta)
& next(varout) != next(input)

Table 3.1: Effect Modes

Name Parameters Transitions
Entering During Back

Permanent — T: failure — —

Transient — T: failure G: !self fix T: self fix

SelfFixWithCounter counter max T: failure G: counter < counter max G: counter >= counter max

Table 3.2: Local Dynamics

The Fault Library contains the models split for the effects and the local dynamics. The
library is made of xml files and optionally correlated with SMV file to model the behaviours.

4Other than “varout” and “input”
5Formerly StuckAt
6Formerly NonDeterminism

22

3.6.1 Effect Model

Stuck-At By Reference

An example of an EM which models the effects of stucking-at a given term by reference7.

1 <e f f e c t s mode l name=”StuckAtByReference D”>
2 <values>
3 <input reads=”term” type=”Any”
4 desc=”The value at which the output has to be stuck . Can be a constant or a va r i ab l e .”/>
5 <output wr i t e s=”varout ” reads=”input ”
6 desc=”The output va r i ab l e name that reads on the input one”/>
7 </values>
8 <e f f e c t>
9 <en t e r i ng type=”smv” l o c a l=” f a l s e ”>en t e r i ng . smv</enter ing>

10 <during type=”smv” l o c a l=” f a l s e ”>during . smv</during>
11 </e f f e c t>
12 <raw/>
13 </e f f e c t s mode l>

Notice that SMV code can be either inlined in the library xml specification, or can be
imported from external files. In the example both entering and during specification refer
external files.

The entering specification:

1 −− f i l e : en t e r i ng . smv
2 −− varout : the output va r i ab l e
3 −− term : The value at which the output has to be stuck . Can be a constant or a va r i ab l e
4

5 next (varout) = term

The during specification:

1 −− f i l e : dur ing . smv
2 −− varout : the output va r i ab l e
3

4 next (varout) = term

There are two different types of Stuck At By Reference fault mode:

• StuckAtByReference I for modules with instantaneous reaction (Figure 3.6)

• StuckAtByReference D for modules with delayed reaction (Figure 3.7)

nominal fault

next(varout) = next(term)

next(varout) = next(term)

Figure 3.6: EM for a stuck-at instantaneous by reference fault mode

7By reference means that the value of varout will depend on the values of the parameters in real time

23

nominal fault

next(varout) = term

next(varout) = term

Figure 3.7: EM for a stuck-at delayed by reference fault mode

Stuck-At By Value

EM which models the effects of stucking-at a given term by value8.
There is two different types of Stuck At By Value fault mode:

• StuckAtByValue I for modules with instantaneous reaction (Figure 3.8)

• StuckAtByValue D for modules with delayed reaction (Figure 3.9)

nominal fault

next(varout) = next(term)

next(varout) = varout

Figure 3.8: EM for a stuck-at instantaneous by value fault mode

nominal fault

next(varout) = term

next(varout) = varout

Figure 3.9: EM for a stuck-at delayed by value fault mode

Frozen

EM which models the effects of frozen to the last value.

Non Determinism By Reference for numeric variables

EM which models the effects of giving a random value between a min term and a max term by
reference for numeric variables.

There is two different types of Non Determinism By Reference fault mode for numeric
variables:

8By value means that the value of varout will be evaluated at the entrance in the fault mode, depending
on the parameters, and remains the same for all the duration of the fault

24

nominal fault

next(varout) = input

next(varout) = varout

Figure 3.10: EM for a frozen fault mode

• NonDeterminismByReference Num I for modules with instantaneous reaction (Figure 3.11)

• NonDeterminismByReference Num D for modules with delayed reaction (Figure 3.12)

nominal fault

next(varout) >= next(min_bound) &
next(varout) <= next(max_bound)

next(varout) >= next(min_bound) &
next(varout) <= next(max_bound)

Figure 3.11: EM for a non determinism instantaneous by reference fault mode for numeric
variables

nominal fault

next(varout) >= min_bound &
next(varout) <= max_bound

next(varout) >= min_bound &
next(varout) <= max_bound

Figure 3.12: EM for a non determinism delayed by reference fault mode for numeric variables

Non Determinism By Value for numeric variables

EM which models the effects of giving a random value between a min term and a max term by
value for numeric variables.

There is two different types of Non Determinism By Value fault mode for numeric variables:

• NonDeterminismByValue Num I for modules with instantaneous reaction (Figure 3.13)

• NonDeterminismByValue Num D for modules with delayed reaction (Figure 3.14)

Non Determinism By Reference for boolean variables

EM which models the effects of giving a random value by reference for boolean variables.

25

nominal fault

next(varout) >= next(min_bound) &
next(varout) <= next(max_bound)

next(varout) = varout

Figure 3.13: EM for a non determinism instantaneous by value fault mode for numeric variables

nominal fault

next(varout) >= min_bound &
next(varout) <= max_bound

next(varout) = varout

Figure 3.14: EM for a non determinism delayed by value fault mode for numeric variables

nominal fault

next(varout) = FALSE |
next(varout) =TRUE

next(varout) = FALSE |
next(varout) =TRUE

Figure 3.15: EM for a non determinism by reference fault mode for boolean variables

nominal fault

next(varout) = FALSE |
next(varout) =TRUE

next(varout) = varout

Figure 3.16: EM for a non determinism by value fault mode for boolean variables

Non Determinism By Value for boolean variables

EM which models the effects of giving a random value by value for boolean variables.

Ramp Down

An example of an EM which model the effects of ramping down a symbol.

1 <e f f e c t s mode l name=”RampDown” desc=”Bla bla”>
2 <values>
3 <input name=”decr ” type=”In t eg e r ”/>
4 <input name=”end value ” type=”In t eg e r ”/>

26

5 <output name=”varout ” reads=”input”/>
6 </values>
7 <e f f e c t>
8 <ente r ing>next (varout) = input</enter ing>
9 <during>

10 next (varout) = case
11 ramp mode = RAMPINGDOWN : varout − decr ;
12 ramp mode = RAMPINGDONE : varout ;
13 esac
14 </during>
15 </e f f e c t>
16 <raw>
17 VAR ramp mode : { RAMPINGDOWN, RAMPINGDONE } ;
18 ASSIGN
19 i n i t (ramp mode) := RAMPINGDOWN;
20 next (ramp mode) := case
21 ! i s f a u l t : RAMPINGDOWN;
22 i s f a u l t & varout − decr > end value : RAMPINGDOWN;
23 TRUE: RAMPINGDONE;
24 esac ;
25 </raw>
26 </e f f e c t s mode l>

nominal fault

next(varout) = input

next(varout) = case
 ramp_mode=RAMPING_DOWN: varout - decr;
 ramp_mode=RAMPING_DONE: varout;
esac

Figure 3.17: EM for a ramp-down fault mode

Notice keyword is fault which is a predicate whose truth value is true iff the mode is
fault. Conversely, predicate is nominal which is true iff the mode is nominal.

Furthermore, in general the negation of is fault is not equivalent to is nominal, as when
composed with other fms, both is fault and is nominal of a single EM can be false.

Conditional

An example of an EM which model the effects of choosing the varout value based on a boolean
condition at the entrance.

1 <e f f e c t s mode l name=”Condit ional D”>
2 <values>
3 <input reads=”cond i t i on ” type=”Boolean”/>
4 <input reads=”then term” type=”Any” />
5 <input reads=”e l s e t e rm ” type=”Any” />
6 <output wr i t e s=”varout ” reads=”input ” />
7 </values>
8 <e f f e c t>
9 <en t e r i ng type=”smv” l o c a l=” f a l s e ”>en t e r i ng . smv</enter ing>

10 <during type=”smv” l o c a l=” f a l s e ”>during . smv</during>
11 </e f f e c t>
12 <raw>
13 VAR CONDITION AT ENTRANCE : boolean ;
14 ASSIGN
15 i n i t (CONDITION AT ENTRANCE) := cond i t i on ;
16 next (CONDITION AT ENTRANCE) := case
17 ! i s f a u l t & next (i s f a u l t) : CONDITION AT ENTRANCE;
18 i s f a u l t & next (i s f a u l t) : CONDITION AT ENTRANCE;
19 TRUE : next (cond i t i on) ;
20 esac ;

27

21 </raw>
22 </e f f e c t s mode l>

There is two different types of Conditonal fault mode:

• Conditional I for modules with instantaneous reaction (Figure 3.18)

• Conditional D for modules with delayed reaction (Figure 3.19)

nominal fault

next(varout) = (
CONDITION_AT_ENTRANCE ?
next(then_term)
: next(else_term))

next(varout) = (
CONDITION_AT_ENTRANCE ?
next(then_term)
: next(else_term))

Figure 3.18: EM for a conditional instantaneous fault mode

nominal fault

next(varout) = (
CONDITION_AT_ENTRANCE ?
then_term
: else_term)

next(varout) = (
CONDITION_AT_ENTRANCE ?
then_term
: else_term)

Figure 3.19: EM for a conditional delayed fault mode

ConditionalDualOutputs

An example of an EM which affect two outputs of the NC. Their values will be based on a
boolean condition at the entrance.

1 <e f f e c t s mode l name=”ConditionalDualOutputs D”>
2 <values>
3 <input reads=”cond i t i on ” type=”Boolean”/>
4 <input reads=”then term 1 ” type=”Any” />
5 <input reads=”e l s e t e rm 1 ” type=”Any”/>
6 <input reads=”then term 2 ” type=”Any” />
7 <input reads=”e l s e t e rm 2 ” type=”Any” />
8 <output wr i t e s=”varout 1 ” reads=”input 1 ” />
9 <output wr i t e s=”varout 2 ” reads=”input 2 ” />

10 </values>
11 <e f f e c t>

28

12 <en t e r i ng type=”smv” l o c a l=” f a l s e ”>en t e r i ng . smv</enter ing>
13 <during type=”smv” l o c a l=” f a l s e ”>during . smv</during>
14 </e f f e c t>
15 <raw>
16 VAR CONDITION AT ENTRANCE : boolean ;
17 ASSIGN
18 i n i t (CONDITION AT ENTRANCE) := cond i t i on ;
19 next (CONDITION AT ENTRANCE) := case
20 ! i s f a u l t & next (i s f a u l t) : CONDITION AT ENTRANCE;
21 i s f a u l t & next (i s f a u l t) : CONDITION AT ENTRANCE;
22 TRUE : next (cond i t i on) ;
23 esac ;
24 </raw>
25 </e f f e c t s mode l>

There is two different types of ConditonalDualOutputs fault mode:

• ConditionalDualOutputs I for modules with instantaneous reaction (Figure 3.20)

• ConditionalDualOutputs D for modules with delayed reaction (Figure 3.21)

nominal fault

next(varout_1) = (
CONDITION_AT_ENTRANCE ?
next(then_term_1)
: next(else_term_1))
& next(varout_2) = (
CONDITION_AT_ENTRANCE ?
next(then_term_2)
: next(else_term_2))

next(varout_1) = (
CONDITION_AT_ENTRANCE ?
next(then_term_1)
: next(else_term_1))
& next(varout_2) = (
CONDITION_AT_ENTRANCE ?
next(then_term_2)
: next(else_term_2))

Figure 3.20: EM for a conditional instantaneous fault mode for two outputs

Inverted

EM which models the effects of being stuck at the inverted last value.

Stuck At Fixed

EM which models the effects of being stuck at a fixed random value. The differences with Non
Determinism fault modes is that here the value to apply is randomly chosen at the beginning
of the execution and never changed after.

Random by reference

EM which models the effects of giving a random value by reference.

29

nominal fault

next(varout_1) = (
CONDITION_AT_ENTRANCE ?
then_term_1
: else_term_1)
& next(varout_2) = (
CONDITION_AT_ENTRANCE ?
then_term_2
: else_term_2)

next(varout_1) = (
CONDITION_AT_ENTRANCE ?
then_term_1
: else_term_1)
& next(varout_2) = (
CONDITION_AT_ENTRANCE ?
then_term_2
: else_term_2)

Figure 3.21: EM for a conditional delayed fault mode for two outputs

nominal fault

next(varout) = !input

next(varout) = varout

Figure 3.22: EM for an inverted fault mode

nominal fault

next(varout) = varout

next(varout) = varout

Figure 3.23: EM for an stuck at fixed fault mode

Figure 3.24: EM for a random by reference fault mode

Random by value

EM which models the effects of giving a random value by value.

30

Figure 3.25: EM for a random by value fault mode

Erroneous by reference

EM which models the effects of giving an erroneous value by reference.

Figure 3.26: EM for an erroneous by reference fault mode

Erroneous by value

EM which models the effects of giving an erroneous value by value.

Figure 3.27: EM for an erroneous by value fault mode

Delta out by reference

EM which models the effects of giving a random value out of a delta range from the nominal
value, by reference.

Delta out by value

EM which models the effects of giving a random value out of a delta range from the nominal
value, by value.

31

Figure 3.28: EM for a delta out by reference fault mode

Figure 3.29: EM for a delta out by value fault mode

Delta in random by reference

EM which models the effects of giving a random value in a delta range from the nominal value,
by reference.

Figure 3.30: EM for a delta in random by reference fault mode

Delta in random by value

EM which models the effects of giving a random value in a delta range from the nominal value,
by value.

Figure 3.31: EM for a delta in random by value fault mode

32

Delta in erroneous by reference

EM which models the effects of giving an erroneous value in a delta range from the nominal
value, by reference.

Figure 3.32: EM for a delta in erroneous by reference fault mode

Delta in erroneous by value

EM which models the effects of giving an erroneous value in a delta range from the nominal
value, by value.

Figure 3.33: EM for a delta in erroneous by value fault mode

3.6.2 Local Dynamics

Example of a LDM which defines that a fault mode is reached when a failure event is non-
deterministically issued, and it is transient as it can non-deterministically self-repair:

1 <l oca l dynamics mode l name=”Trans ient ” desc=”Bla bla”>
2 <templates>
3 <template name=” s e l f f i x ” type=” I d e n t i f i e r ”>
4 Desc r ip t i on o f the template .
5 </template>
6 </templates>
7 <events>
8 <event type=”input ” name=” f a i l u r e ”/>
9 <event type=”input ” name=”${ s e l f f i x }”/>

10 </events>
11 <t r a n s i t i o n s>
12 <t r a n s i t i o n from=”nominal ” to=” f a u l t ”>
13 <t r i g g e r>f a i l u r e </t r i g g e r>
14 </t r an s i t i o n>
15 <t r a n s i t i o n from=”f a u l t ” to=” f a u l t ”>
16 <guard>!${ s e l f f i x }</guard>
17 </t r an s i t i o n>
18 <t r a n s i t i o n from=”f a u l t ” to=”nominal”>
19 <t r i g g e r>${ s e l f f i x }</ t r i g g e r>

33

20 <guard>! f a i l u r e </guard>
21 </t r an s i t i o n>
22 </t r a n s i t i o n s>
23 </loca l dynamics model>

nominal fault

failure

${self-fix}

!${self-fix}

Figure 3.34: LDM for as self-repairing fault

Notice that the LDM is a template model which need to be instantiated later. nominal and
fault are all reserved keywords. Like for s, keywords is nominal and is fault are available.
Also notice that events admit negation (e.g. !event_name), meaning that the event is not
being fired.

34

Chapter 4

Safety Assessment

Safety assessment allows the user to check the safety of the model, check how failure states
can be reached, and which sequences of events can produce them. There are several forms of
analysis, including:

1. Fault Tree Generation allows the user to generate a fault tree that shows the minimal
sequence of events that may lead to a given undesired event (top-down analysis) – see
Section 4.2.

2. Failure Mode and Effects Analysis links combinations of events with the list properties
that may be invalidated (bottom-up analysis) – see Section 4.3.

4.1 Declaring the Fault Variables

Safety assessment can be applied to an .smv model, as long as a subset of the variables is
identified as “fault variables”. In case the automated fault extension is carried out, the fault
variables are generated and identified automatically. On the other hand, in case the model is
extended manually, the user has to specify the set of fault variables explicitly, as explained
in Section 3.1. In both cases, the set of fault variables is stored as an XML file (compare
Section 3.1.1).

The information on the set of fault variables is used by the underlying engines to carry out
the analyses, e.g. minimal cut set computation. Fault variables are provided to the tool as an
XML file. For technical reasons, such variables are input variables, and the tool generates a
set of additional (state) variables that keep track of the activation of the fault variables (also
called history variables, see [6, 5] for more details). Intuitively, a history variable becomes true
as soon as the corresponding fault (variable) is triggered, and then it stays true permanently.

By default, xSAP constructs the history variables independently of the fault extension
mechanism, i.e. with both the automated fault extension, and the manual fault extension. In
the latter case, the user specifies an input model that is already extended and contains both
the nominal and faulty behaviors.

The history variables may be already present in the extended model (e.g., in case they
have been modeled manually by the user). In this scenario, they can be declared directly
in the Fault Modes file, as explained in Section 3.1.1. There are two reasons why the user
may want to declare them explicitly. First, for efficiency reasons. Second, when modeling
and analyzing a static (combinational) system (i.e., a system with no transitions and only one

35

Figure 4.1: An example of fault tree

state). In this scenario, xSAP allows the user to model faults using a set of state variables
that directly describe the failure states of the system, instead of modeling faults using input
variables. Such set of state variables can play the role of the set of history variables.

Additional details on how to define the fault and history variables can be found in Sec-
tion 3.1.1, whereas details about how to specify the fault variables, when invoking xSAP, can
be found in Appendix D.1.

4.2 Fault Tree Generation

“Fault Tree Generation” constructs the fault tree for a given property. Basically, a fault tree
is a collection of the minimal combinations of fault events that are associated with failure
specified in the property.

The analysis can be done with or without hypothesis of monotonicity. Intuitively, the
monotonicity hypothesis assumes that if failure is possible with a given fault configuration,
then it is also possible for all the supersets. The algorithms for FT generation can be either
based on BDD technology, or on SAT/SMT technology.
Remark : the algorithms based on SAT technology currently require BDDs to perform some
internal manipulation of event combinations, hence, performance may be affected by the BDD
variable ordering; if dynamic re-ordering of BDD variables is enabled and multiple fault trees
are generated, the performance may be affected by the order in which fault trees are generated.

Once generated, the fault tree can be emitted in different output formats.
In Figure 4.1 a snippet of fault tree is shown. In this example there are:

1. two branches (called cut sets), each of them representing a combination of three events
(linked by an ’and’ gate) that together cause the given failure state

The number of events in a cut set is called order of the cut set.
The probabilities of the root and the internal nodes of the fault tree are computed on the

basis of the probabilities of the leaves, which are specified in the FEI input file.
Another form of analysis is the dynamic fault tree generation. The difference between the

dynamic fault tree generation and the fault tree generation is that the “dynamic” one shows

36

Figure 4.2: An example of fault tree with latent faults

also the precedence of the events (i.e., an event must hold before another one in order to reach
the failure state) using the “priority and”, in addition to the “and”, gate in the fault tree.

4.2.1 Latent Faults

A fault can be declared to be possibly latent, that is, the corresponding item may be failed
prior to the mission under analysis. Latent faults are specified in the FEI file, and associated
with a latent probability. When latent faults are specified, they are taken into account in
Fault Tree Generation, according to [25]. Namely, different cases (latent versus non-latent)
are split and inserted in the fault tree. Figure 4.2 shows a snippet of a fault tree including
latent faults.

4.3 Failure Modes and Effect Analysis

Failure Modes and Effect Analysis allows the user to generate, in tabular form, the set of
combinations of events that may cause a given failure. If the dynamic option for the analysis is
activated, then the order (i.e., the temporal dependence) of the events is considered important,
otherwise, it is not.

The FMEA requires takes into account the properties to be checked, and the system fills a
table with the results of the computation, that is then saved in various formats (e.g. comma-
separated values)

As an example, an FMEA table is shown in Figure 4.3. The table contains an “ID”
column that represents a unique identifier having the form N -M , where N identifies the fault
configuration, and M the event it is associated with. The “ID” can be used to uniquely identify
a fault configuration caused by a top level event (i.e., a single row in the FMEA table).

The highest computed cardinality can be specified in the “cardinality” field with command
option -N. In the example this value is set to 2.

37

Nr ID Failure Mode Failure effects

1 31-1 (masterCC. CC1.cc & !((SC.B1.is powered &
SC.G3.Gen StuckOff.mode is stuckAt Off) SC.B2.is powered) &

SC.B3.is powered)
2 126-1 (masterCC. CC1.cc & !((SC.B1.is powered &

SC.GB3.Switch StuckClosed StuckOpen.mode is stuckAt Open) SC.B2.is powered) &
SC.B3.is powered)

Figure 4.3: An example of FMEA table

4.4 MTCS Analysis

Mode transition cut sets (MTCS) analysis is used to detect causes of system mode transitions,
for example from an operational mode to a faulty mode with restricted functionality. The
analysis is applicable on complex systems with various safety mechanisms such as redundancies
and fault detection components. xSAP performs the analysis on an SMV model with a list of
relevant events and a list of system modes.

The main challenge of the analysis is the formalization of the problem. Currently, xSAP
implements two different approaches: strict and causal approach [7]. Both reduce the prob-
lem of finding causes to parameter synthesis problem and differ in the formula used for the
parameter synthesis. The strict approach identifies events that happen in mode m1 before
transitioning to m2. The causal approach considers also events that can happen before m1

but excludes those that are identified as a cause of m1. The latter approach is more sophisti-
cated and makes use of MCS to compute causes of reaching m1.

The analysis can be run using the provided script compute mtcs.py. As input, the script
takes the SMV model, an XML file with state variables represententing events in the same
format as in FT analysis, and a list of expressions representing system modes.

System modes are provided in one of two possible formats: either as a list of predicate
formulas over state variables in the SMV model; or as a list of state variables with Boolean
or enum type. In the former, each formula represents one mode. In the latter, modes are
computed as a list of all evaluations of the given variables. Based on the provided options, the
script either computes MTCS for all ordered pairs of distinct modes or for transitions from the
first mode to all the other provided modes. If the modes are computed from state variables,
the first computed mode is considered as the source mode.

The output is given as list of sets of events for each transition. Textual output is generated
in a readable XML file. Visual output can be generated either in dot or tex format (using
tikz pictures for visualization). Examples of the outputs are given in Section 7.3.8. For the
visual outputs, paging option can be used to separate transition to individual dot files or
individual pages of tex document. This improves the readability in case many transitions with
many cut sets are visualized.

4.5 Common Cause Analysis

Common Cause Analysis (CCA) is an important step of safety assessment. Its purpose is
to evaluate the consequences of events that may break the hypothesis of independence of
different faults. For instance, an engine burst may case other components of an aircraft to
break simultaneously. In such case, the probability of simultaneous failure of the components

38

Figure 4.4: An example of fault tree with a common cause

is not given by the product of their failures as independent events – it is typically much higher.
CCA aims at investigating possible dependencies between failures, and evaluates the conse-

quences in terms of system safety/reliability. Typically, a system design is evaluated with the
goal of identifying common causes. Then, the consequences of common causes are analyzed.
Finally, the impact on the design of the common causes is evaluated.

In xSAP, common cause analysis in carried out as part of Fault Tree Analysis. xSAP en-
ables the definition of common cause events and of their consequences. Probability is attached
to individual common causes, instead of (in addition to) their constituent faults as indepen-
dent events. In xSAP a common cause may trigger the occurrence of a set of (dependent)
faults in a user-specified manner (e.g., cascading or simultaneous).

xSAP enables the generation of FTs including common causes, and the evaluation of
system reliability in presence of common causes. It is important to notice that failures due
to common causes are analyzed together with component failures due to independent events
(that is, independent failure of a component, and its failure due to a common cause, are both
taken into account by the FT generation engine).

As an example, in Figure 4.4, the cutset on the left contains a reference to a common cause
CC1. The CC is shown with the associated fault probability, and with information about the
associated fault modes (Sc.G1 and Sc.G2 both eventually stuck at off). The cutset on the
right instead shows a normal cutset containing three fault modes and no common causes.

39

Chapter 5

TFPG Analysis

Timed Failure Propagation Graphs (TFPG) were developed as a means to study the timed
propagation of failures in complex systems [19, 18]. They represent a complementary ap-
proach to study the system’s behavior under failures with respect to other safety assessment
techniques such as FTA and FMECA. The focus of TFPGs is to describe the temporal de-
pendence between a number of basic failure modes and a set of off-nominal system conditions
(discrepancies) caused by the failure modes in a multi-mode (switching) system.

5.1 Timed Failure Propagation Graphs

A TFPG (Figure 5.1) consists of a labeled directed graph where nodes represent either failure
modes, which are fault causes, or discrepancies, which are off-nominal conditions that are
the effects of failure modes. Edges between nodes in the graph capture the effect of failure
propagation over time in the underlying dynamic system. Edges in the graph model can be
activated or deactivated depending on a set of possible operation modes of the system; this
allows to represent failure propagation in multi-mode (switching) systems. Failure mode nodes
do not have incoming edges since they are not bound to the occurrence of any other node; on
the other hand, discrepancies must always be bound to the occurrence of failure modes, either
directly or via intermediate discrepancies.

Time and system mode are two key factors in describing the propagation of a failure. In
fact, a failure mode might lead to a chain of discrepancies that take time to occur, and a
system mode might modify the way the failure propagates. For example, we might have a
failure in a pipe, and this could propagate to another pipe; however, it might be the case
that the two pipes are not connected (e.g., separated by a closed-valve) in the current system
mode. This would mean that the failure cannot propagate from the first pipe to the second.
For this reason, in a TFPG it is important to capture this information.

5.1.1 Terminology

We now fix the terminology used when talking about TFPGs as defined in [1]. Note that the
original definition of TFPG did not include some features that were introduced in [1].

We say that a system may have different modes of operations, and we call them system
modes. We assume that the system can only be in one system mode at the time and that,

40

Figure 5.1: An example TFPG

given a finite amount of time, the system will change mode a finite amount of times, and that
the system will stay in each mode for a non-zero amount of time.

A failure mode is a failure of a component of the system. A component might fail in more
than one way, therefore it might have more than one failure mode. We call fault the occurrence
of a failure of the component.

A fault in a component will produce anomalies in system behaviour. These anomalies
are called discrepancies. We use the term failure to indicate a failure mode, a fault or a
discrepancy.

5.1.2 TFPG Definition

We say that a TFPG is a structure G = 〈F,D,E,M,ET,EM,DC,DS〉, where:

• F is a non-empty set of failure modes;

• D is a non-empty set of discrepancies;

• E ⊆ V × V is a set of edges connecting the set of nodes V = F ∪D;

• M is a non-empty set of system modes. At each time instant t the system can be in
only one mode;

41

• ET : E → I is a map that associates every edge in E with a time interval [tmin, tmax] ∈ I
indicating the min/max propagation time on the edge (where, I ∈ R+×R+ ∪ {inf} and
tmin ≤ tmax)

• EM : E → P(M) is a map that associates every edge in E with a set of modes in M .
We assume that EM(e) 6= ∅ for any edge e ∈ E;

• DC : D → {AND, OR} is a map defining the class of each discrepancy as either AND or OR
node;

• DS : D → {M, I} is a map defining the monitoring status of the discrepancy as either M
for monitored or I not monitored (inactive).

A final assumption is that all and only failure modes can be root nodes: failure modes
cannot have incoming edges, and discrepancies must have at least one incoming edge.

5.1.3 Semantics

The original semantics of TFPG [2] can be summarized as follows:

The state of a node indicates whether the failure effects reached this node.
For a failure to propagate through an edge e = (v, v′), the edge should be active
throughout the propagation, that is, from the time the failure reaches v to the time
it reaches v′. An edge e is active if and only if the current operation mode of the
system mc is in the set of activation modes of the edge, that is, mc ∈ EM(e). For
an OR-type node v′ and an edge e = (v, v′) ∈ E, once a failure effect reaches v at
time t, it will reach v′ at a time t′, where e.tmin ≤ t′−t ≤ e.tmax and the edge e is
active during the whole propagation. On the other hand, the activation period of an
AND alarm v′ is the composition of the activation periods for each link (v, v′) ∈ E.
When a failure propagates to a monitored node v′ (DS(v′) = A), its physical state
is considered ON; otherwise, it is OFF. If the link is deactivated any time during
the propagation (because of mode switching), the propagation stops. Links are
assumed memoryless with respect to failure propagation so that the current failure
propagation is independent of any (incomplete) previous propagation. Also, once
a failure effect reaches a node, its state will permanently change and will not be
affected by any future failure propagation.

Infinity Semantics When defining the timing of a propagation, the use of ∞ can assume
two different semantics: open and closed. The open semantics (written [n,∞)) is used to
describe the fact that the propagation time is finite, but unbounded. This means that we
cannot chose a value a-priori to describe the maximum delay of the propagation. However,
the propagation is guaranteed to occur. The closed semantics (written [n,∞]) is used instead
to describe propagations that might never complete (i.e., occur at infinity). This is used to
capture propagation that are important, but might depend on external conditions not modeled
by the TFPG (e.g., input from the environment).

xSAP only accepts TFPGs in which all infinities have an uniform semantics (being either
open or close). This should be indicated in the TFPG model, for clarity. If not indicated, the
default is closed. xSAP will inform the user if the chosen infinity semantics is not supported
by the current analysis.

42

5.2 Reasoning Tasks

We now describe the reasoning tasks on TFPGs that are implemented in xSAP. The analyses
are divided in two groups: model-based and stand-alone. The first group studies the TFPG
in relation to a system model. This is used to verify that the TFPG captures the behaviors
of interest, and to derive a TFPG from a system model. This group includes Behavioral
Validation, Synthesis, and Tightening. The second group (stand-alone) aims at the study of
the TFPG in isolation. It is used to prove properties on the TFPG, regardless of how the
TFPG was obtained. This group includes Possibility, Necessity, Activability and Consistency,
Diagnosis, Refinement, and Filtering.

The stand-alone analyses implemented in xSAP are based on [8]. These techniques are
based on satisfiability modulo theory (SMT) reasoning, and provide a precise characterization
of the timed behavior of the TFPG. Furthermore, they are limited to the frozen-mode assump-
tion, i.e., they assume that the TFPG maintains the same mode throughout the execution.

5.2.1 Behavioral Validation

Behavioral validation is used to check if the TFPG is complete or incomplete with respect to a
model [4]. This means to check whether every trace in the system model has a corresponding
compatible trace in the TFPG.

This check is based on a number of “TFPG associations”, which define each failure mode,
discrepancy, and system mode in terms of propositional expressions over the system state
variables. If a discrepancy d is not defined in the associations file, it is defined in terms of
all nodes that have an edge towards it. The semantics of an AND node that doesn’t have an
associated expression is that it activates whenever all of its predecessors in the graph activate.
The semantics of an OR node is that it activates whenever at least one of its predecessors has
been activated. Such discrepancies are referred to as “virtual discrepancies”.

A TFPG is considered to be incomplete with respect to the system if a system trace can be
found that violates the TFPG constraints. This means that there are failure propagations in
the system not captured by the TFPG. Specifically, a counterexample to TFPG completeness
consists of a system trace and its interpretation in terms of the TFPG variables. The system
trace is a valid trace for the system model, but its TFPG interpretation does not satisfy the
TFPG constraints. This can be because a discrepancy fires when it shouldn’t, for instance
because none of its direct causes have occurred yet; on the other hand it can be because a
discrepancy does not activate even though the TFPG constraints would require it to.

Such counterexamples can be used by the designer to get information about the missing
behaviour in the TFPG, and possibly fix the TFPG or the system model, depending on where
the inconsistency lies.

In addition to completeness, xSAP can also be used to test the tightness of a given TFPG
w.r.t. a system model. Tightness is a property associated to the edge constraints: a TFPG is
said to be tight if it is not possible for some edge to either increase its tmin, decrease its tmax,
or drop any of the modes associated to the edge, without breaking completeness. In other
words, a TFPG is tight if it is complete and propagations are possible in all modes and at the
minimum and maximum propagation delay bounds.

We remark that the current implementation is sound but not complete for disproving the
tightness of parameters tmax =∞. Specifically, xSAP currently can identify only a subset of
tightness witnesses for such assignment, and thus answer either tight or unknown.

43

5.2.2 Synthesis

TFPG Synthesis is used to automatically synthesize a complete TFPG, starting from a system
model and a set of TFPG associations as described in Section 5.2.1. Specifically, the procedure
computes the precedence constraints among all user-defined discrepancies and failure mode
nodes and instantiates a respective TFPG. Where the user-defined nodes are not sufficient
to express the Boolean constraints on precedences, virtual discrepancies as described in the
previous section are introduced.

Note that TFPG synthesis only computes the underlying graph of the TFPG. The timings
are overapproximated with tmin=0 and tmax=inf for all edges. Tight edge parameters can
be identified with the tightening procedure described in Section 5.2.3.

By default the synthesis procedure analyzes, using cone-of-influence, the functional depen-
dencies among nodes and uses this information to prune TFPG edges that represent purely
temporal correlations among the events associated to nodes. This can be disabled if desired.

The following problems can appear during synthesis and will be reported to the user.

• Unreachable Discrepancy Within Analysis Bound: It states that a discrepancy is never
activated in the model within the given bound. It is suggested to either increase the
bound (if the discrepancy is expected to be activated) or remove the discrepancy from
the list of associations (if it is indeed never activated). The discrepancy will still be
placed in the resulting TFPG, isolated from the rest. This is for the user’s convenience
in debugging the problem, but results in an illegal TFPG.

• Correlated Discrepancy Activations: It states that there are discrepancy nodes that under
certain or all failure configurations are always activated at the same time. In order to
obtain a clearer graph structure it is suggested to re-run synthesis after dropping one of
the correlated discrepancies from the TFPG association list given in input.

• Spontaneous Discrepancy Activation: It states that a case has been identified where a
discrepancy node activated spontaneously, i.e. without any failure mode nodes being
activated beforehand. In this case the user could redefine the discrepancy as a failure
mode, investigate the expression over system state variables associated to it, or simply
drop it from the problem input. The discrepancy will still be placed in the resulting
TFPG, isolated from the rest. This is for the user’s convenience in debugging the
problem, but results in an illegal TFPG. Also note that certain TFPG simplification
routines cannot be performed on such a TFPG, which can result in a graph with increased
complexity.

• Isolated Failure Modes: When failure mode nodes appear isolated in the resulting TFPG,
two cases are possible. One, the failure mode never occurs within the analysis bound.
Two, the failure mode occurs but has no effect on the discrepancies within the analysis
bound. The user is informed accordingly, and the failure mode node is in both cases
placed into the final TFPG. The result in this case is a legal TFPG (as opposed to
the case of spontaneous discrepancies), because failure mode nodes are allowed to occur
spontaneously in the TFPG formalism.

44

5.2.3 Tightening

TFPG Tightening is used to improve the accuracy of the edge parameters in a TFPG. It takes
as input a system model, association map, and a complete TFPG. The procedure tries to
increase tmin values and decrease tmax values as much as possible, and drop as many mode
labels as possible, without breaking the completeness of the given TFPG. A filter can be used
to disable tightening of selected edge parameter classes.

Tightening of time bounds will be performed according to the highest precision of any of
the time bound constants in the given TFPG. For instance, if the constant with the highest
precision is 2.52, tightening considers 0.01 as the smallest possible search delta.

The tmax parameters that are set to +∞, search for a corresponding finite tight value is
limited to an upper bound. If no such bound is specified by the user, it is automatically set
to the highest constant appearing in any edge constraint of the TFPG.

In cases where the user does not specify the input variable of the model encoding the time
delta of each transition, only the mode labels are tightened.

5.2.4 Possibility, Necessity, Consistency, and Activability

The Possibility check enables the validation of a TFPG against a (partial) execution. This
check can be used in different ways, in order to show additional properties of the TFPG, such
as necessity, consistency and activability.

Given a TFPG and a (partial) trace of the TFPG (i.e., a set of active nodes, a set of
activation times and, optionally, a mode), the possibility check verifies that the trace is com-
patible with the TFPG and provides a complete trace (i.e., a mode and an association of each
node to a status and activation time). Necessity verifies that a partial trace is implied by the
TFPG. This is usually the case when some behavior is intrinsic in the TFPG. Consistency is
a special case of possibility, in which we check that there is at least one complete trace for the
TFPG. Activability tests that every node can be eventually activated.

5.2.5 Refinement

When editing TFPGs, it is useful to understand the relation between the original and modified
version of the TFPG. Given a (partial) mapping between the discrepancies of the original and
modified TFPG, the refinement check verifies that all behaviors of the original TFPG can be
mapped into behaviors of the modified one (i.e., the original TFPG refines the modified one).

5.2.6 Diagnosis

TFPG are commonly used to diagnose problems in systems. Given a set of timed observations,
we can ask which Failure Modes could cause such a behavior. We implement two types of
diagnosis. The first type simply enumerates all possible sets of failure modes (diagnosis)
compatible with the observations. The second, instead, checks whether a given failure mode
appears in all diagnosis (certain diagnosis). Certain diagnosis tells us whether we can be
certain about the occurrence of the failure mode, given the observations. This type of diagnosis
behaves particularly well with our symbolic SMT-based approach, and can be used to diagnose
TFPGs with thousands of nodes.

45

5.2.7 Filtering

Finally, xSAP provides means to filter a given TFPG in the following two ways. First, the
user might be interested in analyzing only part of a given TFPG, specifically in paths leading
to selected TPFG nodes of interest. xSAP can remove all paths and nodes from the input
TFPG from which the selected nodes cannot be reached. The result is a simpler more focused
TFPG, on which manual inspection can be done more easily and automated analysis more
efficiently. Second, when manually building a TFPG, the graph might contain redundant
edges. xSAP provides the means to automatically remove such edges if present.

5.3 TFPG Formats

TFPG files and TFPG association files use two different types of format:

• Textual Format

• XML Format

5.3.1 Textual Format

We first describe the concrete syntax, i.e. the textual format.

TFPG file

The textual format for TFPG files (extension: .tfpg) makes use of the following keywords:

• “NAME”: the name of TFPG

• “FM”: the Failure Mode (FM node name)

• “AND”: the AND Discrepancy (AND node name)

• “OR”: the OR Discrepancy (OR node name)

• “EDGE”: the Edge (EDGE edg name src node dst node min time max time edge modes)

• “MONITORED”: indicates if a discrepancy is monitored

• “INFINITY ”: indicates infinite time

• “ALL”: all the modes

• “MODES”: the Modes (mode name)

• “INFINITY SEMANTICS OPEN”, “INFINITY SEMANTICS CLOSED”: indicates which
semantics to use for ∞

We remark that:

• Comments are those lines starting with ’--’

46

• Identifiers (name of the TFPG, name of a node, name of a mode and name of an edge)
are sequences of the following characters: ’A’..’Z’, ’a’..’z’, ’0’..’9’, ’_’, ’-’

From a high-level point of view, a structural TFPG consists of a list of nodes, which can
be of three different types:

• Failure Modes

• Discrepancies:

– And discrepancies

– Or discrepancies

and of a list of modes and a list of edges connecting those nodes.
Each Node is associated to:

• Type: the type of the node (Failure Mode, And Discrepancy, Or Discrepancy)

• Name: the name of the node

• IsMonitored: a value stating whether it is monitored or not

Each Edge is associated to:

• SrcNode: the name of the source node

• DestNode: the name of the destination node

• Name: the name of the edge

• TMin: the minimum time of the edge

• TMax: the maximum time of the edge

• Modes: a list of modes

An example of the textual file is given in Figure 5.2.
A textual file can be written in free format. It must contain:

1. “Name” of the TFPG: it is the first (non-empty) token of the file, which consists of the
keyword “NAME” followed by the name of the TFPG

2. (Optionally) The semantics used for the “INFINITY ” operator (OPEN or CLOSED).
If not specified, the default is Closed.

3. Definition of the “nodes”. A node is defined through a keyword defining its type “(FM,
AND or OR)” followed by its name and a value stating whether it is monitored or not.
For instance, the following are possible definitions:

1 FM Gen1 of f
2 AND System Dead MONITORED
3 OR G1 DEAD

47

1 NAME Sensor−Generator
2

3 INFINITY SEMANTICS CLOSED
4

5 FM Gen1 of f
6 FM Gen2 of f
7 FM S e n s 1 o f f
8 FM S e n s 2 o f f
9 AND System Dead MONITORED

10 OR G1 DEAD
11 OR B1 LOW MONITORED
12 OR B1 DEAD
13 OR S1 WO
14 OR G2 DEAD
15 OR B2 LOW MONITORED
16 OR B2 DEAD
17 OR S2 WO
18

19 MODES Primary , Secondary1 , Secondary2
20

21 EDGE EDGE1 Gen1 of f G1 DEAD 0 INFINITY (Primary , Secondary1 , Secondary2)
22 EDGE EDGE2 G1 DEAD B1 LOW 0 INFINITY (Primary , Secondary1)
23 EDGE EDGE3 B1 LOW B1 DEAD 0 INFINITY (Primary , Secondary1)
24 EDGE EDGE4 B1 DEAD S1 WO 0 INFINITY (Primary , Secondary1)
25 EDGE EDGE5 S1 WO System Dead 0 INFINITY (Primary , Secondary1 , Secondary2)
26 EDGE EDGE6 Gen2 of f G2 DEAD 0 INFINITY (Primary , Secondary1 , Secondary2)
27 EDGE EDGE7 G2 DEAD B2 LOW 0 INFINITY (Primary , Secondary2)
28 EDGE EDGE8 B2 LOW B2 DEAD 0 INFINITY (Primary , Secondary2)
29 EDGE EDGE9 B2 DEAD S2 WO 0 INFINITY (Primary , Secondary2)
30 EDGE EDGE10 S2 WO System Dead 0 INFINITY (Primary , Secondary1 , Secondary2)
31 EDGE EDGE11 B1 DEAD S2 WO 0 INFINITY (Secondary1)
32 EDGE EDGE12 B2 DEAD S1 WO 0 INFINITY (Secondary2)
33 EDGE EDGE13 S e n s 1 o f f S1 WO 0 INFINITY (Primary , Secondary1 , Secondary2)
34 EDGE EDGE14 S e n s 2 o f f S2 WO 0 INFINITY (Primary , Secondary1 , Secondary2)

Figure 5.2: TFPG textual format example

4. Definition of the “modes”. This is a part related to the edge definition. Modes are
introduced by the keyword “MODES” and are comma-separated, like for instance:

1 MODES Primary , Secondary1 , Secondary2

5. Definition of the edges. An edge is defined through a keyword (“EDGE”), followed by
its name, the source node, the destination node, the minimum time, the maximum time
and the list of the modes, defined as a comma-separated list encapsulated in parentheses.
Also in this case, two choices as the ones presented for nodes are possible. For instance,
the following are possible definitions:

1 EDGE EDGE1 Gen1 of f G1 DEAD 0 INFINITY ALL
2 EDGE EDGE2 G1 DEAD B1 LOW 0 INFINITY (Primary , Secondary1)
3 EDGE EDGE3 B1 LOW B1 DEAD 0 INFINITY (Primary , Secondary1)

48

We remark that:

• Using the keyword “INFINITY ” the maximum time can be defined to be infinity, e.g:

1 EDGE EDGE15 Gen1 of f G1 DEAD 0 INFINITY (Primary)

• In the current implementation TMin values other than 0 are ignored and internally
replaced by 0, and TMax values other than infinity are ignored and internally replaced
by 0. Support of timing will be implemented in a future release.

• An edge can be active in all possible modes; in this case, instead of explicitly writing all
the existent modes, the user can use the keyword “ALL”, e.g:

1 EDGE EDGE13 S e n s 1 o f f S1 WO 0 INFINITY ALL

TFPG Associations file

The textual format for TFPG associations (extension: .tfpga) contains the following key-
words:

• “FAILURE MODES”: to introduce the list of expressions related to failure modes.

• “MONITORED DISCREPANCIES”: to introduce the list of expressions related to mon-
itored discrepancies.

• “UNMONITORED DISCREPANCIES”: to introduce the list of expressions related to
unmonitored discrepancies.

• “MODES”: to introduce the list of expressions related to the TFPG modes.

Each keyword is followed by the list of associations of that type; two assumptions are done
in this case:

1. The identifier (i.e. the TFPG symbol) is the first word encountered in a line consisting
of alphanumeric, underscore (’ ’) or minus (’-’) characters.

2. The related expression is given by every character found starting from the identifier
enclosed between the space character (’ ’) and newline (’backslash n’).

An example of this format is given in Figure 5.3.

5.3.2 XML Format

A sample TFPG file (whose name, by convention, ends with .txml) looks as follows:

<?xml version=’1.0’ encoding=’UTF-8’?>

<tfpg name="Sensor-Generator">

<nodesList>

<node name="Gen1_off" isMonitored="false">

<type>FM</type>

49

1 FAILURE MODES
2 Gen1 of f root . s c s y s . s c psu1 . s c g e n e r a t o r . sc errorSubcomponent . mode = er ro r dead
3 Gen2 of f root . s c s y s . s c psu2 . s c g e n e r a t o r . sc errorSubcomponent . mode = er ro r dead
4 S e n s 1 o f f root . s c s y s . s c s e n s o r 1 . sc errorSubcomponent . mode = er ro r dead
5 S e n s 2 o f f root . s c s y s . s c s e n s o r 2 . sc errorSubcomponent . mode = er ro r dead
6

7 MONITORED DISCREPANCIES
8 B1 LOW root . s c s y s . s c psu1 . s c b a t t e r y . data low
9 B2 LOW root . s c s y s . s c psu2 . s c b a t t e r y . data low

10 System Dead ! root . s c s y s . d a t a i s a l i v e
11

12 UNMONITORED DISCREPANCIES
13 G2 DEAD root . s c s y s . s c psu2 . s c g e n e r a t o r . data has power = FALSE
14 G1 DEAD root . s c s y s . s c psu1 . s c g e n e r a t o r . data has power = FALSE
15 S1 WO root . s c s y s . s c s e n s o r 1 . data read ing = FALSE
16 S2 WO root . s c s y s . s c s e n s o r 2 . data read ing = FALSE
17 B1 DEAD root . s c s y s . s c psu1 . s c b a t t e r y . data has power out = FALSE
18 B2 DEAD root . s c s y s . s c psu2 . s c b a t t e r y . data has power out = FALSE
19

20 MODES
21 Primary root . s c s y s . da ta mode se l e c to r = const Primary
22 Secondary1 root . s c s y s . da ta mode se l e c to r = const Secondary1
23 Secondary2 root . s c s y s . da ta mode se l e c to r = const Secondary2

Figure 5.3: TFPG Associations textual format example

</node>

<node name="Gen2_off" isMonitored="false">

<type>FM</type>

</node>

<node name="Sens1_off" isMonitored="false">

<type>FM</type>

</node>

<node name="Sens2_off" isMonitored="false">

<type>FM</type>

</node>

<node name="System_Dead" isMonitored="true">

<type>AND</type>

</node>

<node name="G1_DEAD" isMonitored="false">

<type>OR</type>

</node>

<node name="B1_LOW" isMonitored="true">

<type>OR</type>

</node>

<node name="B1_DEAD" isMonitored="false">

<type>OR</type>

</node>

<node name="S1_WO" isMonitored="false">

50

<type>OR</type>

</node>

</nodesList>

<modesList>

<mode>Primary</mode>

<mode>Secondary1</mode>

<mode>Secondary2</mode>

</modesList>

<edgesList>

<edge name="EDGE1">

<srcNode>Gen1_off</srcNode>

<tMin>0.0</tMin>

<tMax>-1.0</tMax>

<modesList>

<mode>Primary</mode>

<mode>Secondary1</mode>

<mode>Secondary2</mode>

</modesList>

<destNode>G1_DEAD</destNode>

</edge>

<edge name="EDGE2">

<srcNode>G1_DEAD</srcNode>

<tMin>0.0</tMin>

<tMax>-1.0</tMax>

<modesList>

<mode>Primary</mode>

<mode>Secondary1</mode>

</modesList>

<destNode>B1_LOW</destNode>

</edge>

<edge name="EDGE3">

<srcNode>B1_LOW</srcNode>

<tMin>0.0</tMin>

<tMax>-1.0</tMax>

<modesList>

<mode>Primary</mode>

<mode>Secondary1</mode>

</modesList>

<destNode>B1_DEAD</destNode>

</edge>

<edge name="EDGE4">

<srcNode>B1_DEAD</srcNode>

<tMin>0.0</tMin>

<tMax>-1.0</tMax>

<modesList>

<mode>Primary</mode>

51

<mode>Secondary1</mode>

</modesList>

<destNode>S1_WO</destNode>

</edge>

<edge name="EDGE5">

<srcNode>S1_WO</srcNode>

<tMin>0.0</tMin>

<tMax>-1.0</tMax>

<modesList>

<mode>Primary</mode>

<mode>Secondary1</mode>

<mode>Secondary2</mode>

</modesList>

<destNode>System_Dead</destNode>

</edge>

</edgesList>

</tfpg>

The value “-1” is used to symbolize infinity for TMax values.
A sample TFPG associations file (whose name, by convention, ends with .axml) looks as

follows:

<?xml version=’1.0’ encoding=’UTF-8’?>

<associations>

<failureModes>

<assoc id="Sens1_off"

expr="root.sc_sys.sc_sensor1.sc__errorSubcomponent.mode = error_dead"/>

<assoc id="Sens2_off"

expr="root.sc_sys.sc_sensor2.sc__errorSubcomponent.mode = error_dead"/>

</failureModes>

<monitoredDiscrepancies>

<assoc id="B1_LOW" expr="root.sc_sys.sc_psu1.sc_battery.data_low"/>

<assoc id="B2_LOW" expr="root.sc_sys.sc_psu2.sc_battery.data_low"/>

<assoc id="System_Dead" expr="!root.sc_sys.data_is_alive"/>

</monitoredDiscrepancies>

<unmonitoredDiscrepancies>

<assoc id="S1_WO" expr="root.sc_sys.sc_sensor1.data_reading = FALSE"/>

<assoc id="S2_WO" expr="root.sc_sys.sc_sensor2.data_reading = FALSE"/>

</unmonitoredDiscrepancies>

<tfpgModes>

<assoc id="Primary" expr="root.sc_sys.data_mode_selector = const_Primary"/>

<assoc id="Secondary1" expr="root.sc_sys.data_mode_selector = const_Secondary1"/>

<assoc id="Secondary2" expr="root.sc_sys.data_mode_selector = const_Secondary2"/>

</tfpgModes>

</associations>

52

Chapter 6

Fault Detection And Isolation

Fault Detection and Isolation (FDI) is concerned with diagnosing the faulty behavior of a
system, identifying the specific fault that has occurred and designing a system able to activate
suitable alarms whenever given faults occur.

This analysis can be organized in four different activities:

Diagnosability analysis : the model of the system is analyzed to identify whether a specific
fault (or combinations thereof) is diagnosable, i.e., there exists an ideal diagnoser that
is always able to detect the fault.

Generation of minimum observables set : this is an optional step in which the minimum
set of observables required for detecting a specified fault is synthesized.

Synthesis of diagnoser : using automatic synthesis techniques, a diagnoser is generated
that raises an alarm every time a given fault occurs.

Effectiveness analysis : the diagnoser is validated by model checking properties on the
combined model (i.e., the system model + the model of the diagnoser). It is possible to
use the diagnoser automatically generated with synthesis techniques, or manually design
it.

6.1 Diagnosability Analysis

The purpose of diagnosability analysis is to verify whether enough observables are available
to always detect a specific condition within a given time bound.

In order to perform this analysis we first need to specify the diagnosis condition of interest
- for instance the occurrence of a fault - together with a desired on the diagnosis delay bound.
Furthermore we need to specify a file specifying the observable variables needs to be given.
These variables are the signals we can monitor in the system and which will be available to the
diagnoser. Optionally, a diagnosis context can be specified to exclude certain traces that are
unrealistic. This is relevant when the model doesn’t include, for instance, precise description
of the environment or of a controller for the modeled system. Note that if the condition is
diagnosable under a context there is no guarantee w.r.t. behaviors outside the context. In
practice this means that a diagnoser synthesized for the specification is guaranteed to raise
the alarm only on traces covered by the context.

53

A counterexample to diagnosability, called critical pair, consists of a pair of traces that are
observationally indistinguishable. On one trace the condition occurs, and on the other trace it
doesn’t (within the required time bound). Since the observations are the same on both traces,
it is impossible for a diagnoser to distinguish them and thus raise the alarm with confidence
that the fault actually happened.

A full description of the framework can be found in [9].

6.2 Generation of minimum observables set

The purpose of minimum observables set generation is to identify subsets of observables that
still guarantee diagnosability of the chosen condition. This is helpful when trying to identify
what sensors capture sufficient information, and in practice also to simplify the FDI imple-
mentation and possibly reduce its cost. This analysis is carried out by using the same inputs
presented in diagnosability analysis section, i.e. a diagnosis condition, a delay bound, a set of
available observables, and optionally a diagnosis context. Note that generation of minimum
observables set is an optional step, which is not strictly required in order to complete FDI
analysis.

6.3 Synthesis of diagnoser

The purpose of synthesis is to generate a diagnoser able to raise an alarm every time a specific
fault occurs.

This analysis is carried out given a model of the system to be analyzed, the set of observ-
ables, and the specification of the alarms to be raised. In particular, if a fault is diagnosable
in a given context, the synthesized diagnoser will be able to raise the alarm whenever the fault
has occurred and the condition on the context (i.e., the indicator event) is satisfied.

The synthesis routines are based on the notions of:

• Trace diagnosability : the diagnosis is localized to individual traces (executions). The
diagnoser will raise an alarm if it knows for sure that the fault has occurred in a specific
execution, otherwise it will not.

• Maximality of the diagnoser : the diagnoser will raise an alarm as soon as it knows for
sure that the fault has occurred.

Notice that we can specify many different alarms; a possible approach consists in adding
an alarm for each different possible fault, and another one for a generic fault, represented by
the disjunction of all possible faults.

6.4 Effectiveness analysis

Effectiveness analysis consists in the validation of the generated diagnoser.
The generated diagnoser is encoded in a module containing a state variable, representing

the different states of it; additionally, three DEFINE constraints are contained, whose meaning
is as follows:

54

1. KFAULT : represents the disjunction of those states where the diagnoser knows that the
fault named FAULT has occurred.

2. KnFAULT : represents the disjunction of those states where the diagnoser knows that
the fault named FAULT has not occurred.

3. UFAULT : represents the disjunction of those states where the diagnoser cannot decide
whether the fault named FAULT has occurred or not.

By model checking a set of automatically generated LTL properties containing the previous
DEFINE constraints, we can validate the generated diagnoser.

6.5 Files format

6.5.1 Observables file

The observables file simply lists (one per line) the variables representing the observable part
of the system.

A sample observables file looks as follows:

1 SC.G1 . s t a t e
2 cmd G1
3 SC.G2 . s t a t e
4 cmd G2

Figure 6.1: Observables file example

6.5.2 Alarm Specification file

The alarm specification file lists the set of alarms to be considered. The suggested extension
for these files is .asl.

Each alarm is defined with the following fields:

NAME The name of the alarm (mandatory)

CONDITION The diagnosis condition associated with the alarm (mandatory)

TYPE The type of the alarm: finite, bounded, exact (optional – defaults to finite)

DELAY The delay associated with the alarm. This makes sense only if type is bounded or
exact.

CONTEXT The LTL context to consider when studying the alarm (optional)

55

1 NAME: A2
2 CONDITION: no i s e=1
3

4 NAME: A2
5 CONDITION: mb. ox
6 TYPE: exact
7 DELAY: 1
8

9 NAME: A5
10 CONDITION: mb. ox
11 TYPE: bounded
12 DELAY: 5
13 CONTEXT: G F TRUE

Figure 6.2: ASL file example

56

Chapter 7

Triple Generator Example

In this document we use as a running example a model of a triple redundant generator. Its
characteristics are described in the following sections.

7.1 Informal Description

7.1.1 The Plant

The triple generator example, represented in figure 7.1, is composed of several components
which are described below:

• Generators (G1, G2 and G3): they have a single output link and can have two possible
states:

– “ON”: the generator provides energy on the output link;

– “OFF”: the generator is switched off;

• Circuit Breakers (GB1, GB2, GB3, BB1, BB2 and BB3): they have two electric links
and can have two possible states:

– “OPEN”: the circuit breaker maintains separated the two electric links;

– “CLOSED”: the circuit breaker connects the two electric links to each other;

• Buses (B1, B2 and B3): they represent the loads that can be powered by the generators.
Each Bus has three links always connected each other so they must have the same value
at each step;

• Controller: the component is in closed-loop with the system, which is sensed/controlled
by the Controller itself.

System Faults

Both the generators and the circuit breakers change their internal state (“ON” or “OFF” for
generators and “OPEN” or “CLOSED” for circuit breakers) according to the signal provided
by the controller. This behavior is called nominal but it can diverge in case of failure as
follows:

57

Figure 7.1: Triple Generator Example

• Generators can fail off permanently. It means that when the fault occurs the internal
state of the generator is stuck at “OFF” permanently;

• Circuit breakers can fail open and closed. It means that, depending on the specific fault,
the internal state of the circuit breaker is stuck at “OPEN” or “CLOSED” but the fault
is not permanent, so the component can go back to the nominal behavior.

7.1.2 Controller behavior

Source to bus priority

The triple generator system has redundancies paths from the generators to each bus, this
means that it is possible to provide the power in different way. In order to have a policy
that privileges some power configuration respect to others they are defined some priority
constraints on the Generator-to-Bus power, shown in table 7.1, and also the priority for each
Generator-to-Bus path as depicted in table 7.2.

7.1.3 System Requirements

The behavior of the controller has to guarantee the observance of the following requirements:

1. No bus will be connected to more than 1 power source at any time.

2. If any power source is on, then all buses will be powered.

58

BUS High priority Medium priority Low priority

B1 G1 G2 G3
B2 G2 G1 G3
B3 G2 G1 G3

Table 7.1: Bus power source priority

Source to bus paths Priority B1 B2 B3

G1 High NA BB1 BB3
Low NA BB3-BB2 BB1-BB2

G2 High BB1 NA BB2
Low BB2-BB3 NA BB1-BB3

G3 High BB3 BB2 NA
Low BB2-BB1 BB3-BB1 NA

Table 7.2: Source to bus path priority

3. Bus power source priority and source to bus path priority schemes will be respected at
all time (see tables 7.1 and 7.2).

4. If no power source is on, then all buses will be unpowered.

5. Any single/dual component failure will not cause other system requirements to be vio-
lated.

6. Never more than two generators on, unless required in case of failures.

7.2 SMV modeling

The modeling of the Triple Generator system is composed of two main components: the
controller and the system configuration.

The system configuration (see code 7.4) links together generators (code 7.1), switches
(code 7.2) and buses (code 7.3) and it describes how they interact.

1MODULE Gene ra to r (cmd , i n i t s t a t e)
2 VAR
3 s t a t e : {on , o f f } ;
4

5 DEFINE
6 i s o n := (s t a t e = on) ;
7

8 DEFINE
9 i s o f f := (s t a t e = o f f) ;

10

11 ASSIGN
12 next (s t a t e) :=
13 case

59

14 (cmd = cmd on) : on ;
15 (cmd = cmd of f) : o f f ;
16 TRUE : s t a t e ;
17 esac ;
18

19 ASSIGN
20 i n i t (s t a t e) := i n i t s t a t e ;

Code 7.1: Module Generator

1MODULE Switch (cmd , i n i t s t a t e)
2 VAR
3 s t a t e : {open , c l o s e d } ;
4

5 DEFINE
6 i s c l o s e d := (s t a t e = c l o s e d) ;
7 i s o p e n := (s t a t e = open) ;
8

9 ASSIGN
10 next (s t a t e) :=
11 case
12 (cmd = cmd c losed) : c l o s e d ;
13 (cmd = cmd open) : open ;
14 TRUE : s t a t e ;
15 esac ;
16

17 ASSIGN
18 i n i t (s t a t e) := i n i t s t a t e ;

Code 7.2: Module Switch

1MODULE Bus (in1 , in2 , i n 3)
2 VAR
3 s t a t e : {working , broken } ;
4

5 DEFINE
6 i s b r o k e n := (s t a t e = broken) ;
7 DEFINE
8 i s p owe r e d := (s t a t e = work ing) & (count ((i n1) , (i n2) , (i n3)) = 1) ;
9

10 −− When the bus i s overpowered i t becomes broken and u n f i x a b l e −−
11 ASSIGN
12 i n i t (s t a t e) :=
13 case
14 (count ((i n1) , (i n2) , (i n3)) > 1) : broken ;
15 TRUE : work ing ;
16 esac ;
17

18 next (s t a t e) :=
19 case
20 next ((count ((i n1) , (i n2) , (i n3)) > 1)) : broken ;
21 TRUE : s t a t e ;
22 esac ;

Code 7.3: Module Bus

60

1MODULE Sy s t em Con f i g u r a t i o n (cmd Gs , cmd CBs)
2 DEFINE
3 i n i t G 1 := on ;
4 i n i t G 2 := on ;
5 i n i t G 3 := o f f ;
6

7 i n i t GB1 := c l o s e d ;
8 i n i t GB2 := c l o s e d ;
9 i n i t GB3 := open ;

10 i n i t BB1 := open ;
11 i n i t BB2 := c l o s e d ;
12 i n i t BB3 := open ;
13

14 VAR
15 G1 : Gene ra to r (cmd Gs [index G1] , i n i t G 1) ;
16 G2 : Gene ra to r (cmd Gs [index G2] , i n i t G 2) ;
17 G3 : Gene ra to r (cmd Gs [index G3] , i n i t G 3) ;
18

19 GB1 : Switch (cmd CBs [index GB1] , i n i t GB1) ;
20 GB2 : Switch (cmd CBs [index GB2] , i n i t GB2) ;
21 GB3 : Switch (cmd CBs [index GB3] , i n i t GB3) ;
22

23 BB1 : Switch (cmd CBs [index BB1] , i n i t BB1) ;
24 BB2 : Switch (cmd CBs [index BB2] , i n i t BB2) ;
25 BB3 : Switch (cmd CBs [index BB3] , i n i t BB3) ;
26

27 −− Bus i n s t a n c e s , s e e below f o r the i n pu t d e f i n i t i o n −−
28

29 B1 : Bus (B1 poweredby G1 , B1 poweredby G2 , B1 poweredby G3) ;
30 B2 : Bus (B2 poweredby G1 , B2 poweredby G2 , B2 poweredby G3) ;
31 B3 : Bus (B3 poweredby G1 , B3 poweredby G2 , B3 poweredby G3) ;
32

33 −− De f i n i t i o n o f the s i g n a l s (i n mat r i x fo rmat) used by C o n t r o l l e r
34 −− to know the s t a t e o f the s i n g l e components
35

36 DEFINE
37 i n i t G s := [
38 i n i t G1 ,
39 i n i t G2 ,
40 i n i t G 3] ;
41

42 i n i t CB s := [
43 i n i t GB1 ,
44 i n i t GB2 ,
45 i n i t GB3 ,
46 i n i t BB1 ,
47 i n i t BB2 ,
48 i n i t BB3] ;
49

50 DEFINE
51 index GB1 := 0 ;
52 index GB2 := 1 ;
53 index GB3 := 2 ;
54

55 index BB1 := 3 ;
56 index BB2 := 4 ;
57 index BB3 := 5 ;
58

59 i ndex G1 := 0 ;
60 i ndex G2 := 1 ;
61 i ndex G3 := 2 ;
62

63 DEFINE
64 even t Gs := [
65 f e v o f f G s ,
66 nev Gs] ;

61

67

68 event CBs := [
69 f ev open CBs ,
70 f e v c l o s e d CBs ,
71 nev CBs] ;
72

73 DEFINE
74 f ev open CBs := [
75 GB1 . f e v s t u c k a t o p e n ,
76 GB2 . f e v s t u c k a t o p e n ,
77 GB3 . f e v s t u c k a t o p e n ,
78 BB1 . f e v s t u c k a t o p e n ,
79 BB2 . f e v s t u c k a t o p e n ,
80 BB3 . f e v s t u c k a t o p e n] ;
81

82 f e v c l o s e d CB s := [
83 GB1 . f e v s t u c k a t c l o s e d ,
84 GB2 . f e v s t u c k a t c l o s e d ,
85 GB3 . f e v s t u c k a t c l o s e d ,
86 BB1 . f e v s t u c k a t c l o s e d ,
87 BB2 . f e v s t u c k a t c l o s e d ,
88 BB3 . f e v s t u c k a t c l o s e d] ;
89

90 nev CBs := [
91 GB1 . nev ,
92 GB2 . nev ,
93 GB3 . nev ,
94 BB1 . nev ,
95 BB2 . nev ,
96 BB3 . nev] ;
97

98 DEFINE
99 f e v o f f G s := [

100 G1 . f e v s t u c k a t o f f ,
101 G2 . f e v s t u c k a t o f f ,
102 G3 . f e v s t u c k a t o f f] ;
103

104 nev Gs := [
105 G1 . nev ,
106 G2 . nev ,
107 G3 . nev] ;
108

109

110 −− De f i n i t i o n o f the p o s s i b l e paths to Bus 1 −−
111

112 DEFINE
113 B1 poweredby G1 U := (G1 . i s o n) & (GB1 . i s c l o s e d) ;
114 B1 poweredby G2 L := B3 poweredby G2 L & (BB3 . i s c l o s e d) ;
115 B1 poweredby G2 R := B2 poweredby G2 U & (BB1 . i s c l o s e d) ;
116 B1 poweredby G3 L := B3 poweredby G3 U & (BB3 . i s c l o s e d) ;
117 B1 poweredby G3 R := B2 poweredby G3 R & (BB1 . i s c l o s e d) ;
118

119 −− De f i n i t i o n o f the p o s s i b l e paths to Bus 2 −−
120

121 DEFINE
122 B2 poweredby G1 L := B1 poweredby G1 U & (BB1 . i s c l o s e d) ;
123 B2 poweredby G1 R := B3 poweredby G1 R & (BB2 . i s c l o s e d) ;
124 B2 poweredby G2 U := (G2 . i s o n) & (GB2 . i s c l o s e d) ;
125 B2 poweredby G3 L := B1 poweredby G3 L & (BB1 . i s c l o s e d) ;
126 B2 poweredby G3 R := B3 poweredby G3 U & (BB2 . i s c l o s e d) ;
127

128 −− De f i n i t i o n o f the p o s s i b l e paths to Bus 3 −−
129

130 DEFINE
131 B3 poweredby G1 L := B2 poweredby G1 L & (BB2 . i s c l o s e d) ;
132 B3 poweredby G1 R := B1 poweredby G1 U & (BB3 . i s c l o s e d) ;
133 B3 poweredby G2 L := B2 poweredby G2 U & (BB2 . i s c l o s e d) ;

62

134 B3 poweredby G2 R := B1 poweredby G2 R & (BB3 . i s c l o s e d) ;
135 B3 poweredby G3 U := (G3 . i s o n) & (GB3 . i s c l o s e d) ;
136

137

138 −− De f i n i t i o n o f the p o s s i b l e i n p u t s f o r Bus 1 −−
139

140 DEFINE
141 B1 poweredby G1 := B1 poweredby G1 U ;
142 B1 poweredby G2 := B1 poweredby G2 R | B1 poweredby G2 L ;
143 B1 poweredby G3 := B1 poweredby G3 R | B1 poweredby G3 L ;
144

145 −− De f i n i t i o n o f the p o s s i b l e i n p u t s f o r Bus 2 −−
146

147 DEFINE
148 B2 poweredby G1 := B2 poweredby G1 R | B2 poweredby G1 L ;
149 B2 poweredby G2 := B2 poweredby G2 U ;
150 B2 poweredby G3 := B2 poweredby G3 R | B2 poweredby G3 L ;
151

152 −− De f i n i t i o n o f the p o s s i b l e i n p u t s f o r Bus 3 −−
153

154 DEFINE
155 B3 poweredby G1 := B3 poweredby G1 R | B3 poweredby G1 L ;
156 B3 poweredby G2 := B3 poweredby G2 R | B3 poweredby G2 L ;
157 B3 poweredby G3 := B3 poweredby G3 U ;

Code 7.4: Module Circuit System

A complete analysis of the Triple Redundant Generator example is out of the scope of this
document. The full example is available in the xSAP tool distribution. In this manual, only
some parts are reported, in order to illustrate the modeling in SMV language.

7.3 Concrete example of Fault Extension

7.3.1 Nominal Model

This example is taken from a larger model, but in this context only two modules are interesting:
module Generator and module Switch.

Here a selected extract is presented, for seeing the complete example see:
file examples/fe/triple modular generator/SC TMG.smv

and associated FEI file examples/fe/triple modular generator/SC TMG.fei

Module Generator can break and can propagate a failure through event
fev stuck at off.

1MODULE Gene ra to r (cmd , i n i t s t a t e)
2 VAR s t a t e : {on , o f f } ;
3

4 −− De f i n i t i o n o f the t r a n s i t i o n l a b e l s between nomina l and f a u l t s t a t e
5 IVAR
6 f e v s t u c k a t o f f : boolean ;
7 nev : boolean ;
8

9 TRANS nev = FALSE ;
10

11 DEFINE
12 i s o n := (s t a t e = on) ;
13

14 DEFINE
15 i s o f f := (s t a t e = o f f) ;
16

63

17 ASSIGN
18 next (s t a t e) :=
19 case
20 (cmd = cmd on) : on ;
21 (cmd = cmd of f) : o f f ;
22 TRUE : s t a t e ;
23 esac ;
24

25 ASSIGN
26 i n i t (s t a t e) := i n i t s t a t e ;

Module Switch can break and can propagate a failure through events
fev stuck at closed and fev stuck at open.

1MODULE Switch (cmd , i n i t s t a t e)
2 VAR
3 s t a t e : {open , c l o s e d } ;
4

5 −− De f i n i t i o n o f the t r a n s i t i o n l a b e l s among nomina l and f a u l t s t a t e s
6 IVAR
7 f e v s t u c k a t c l o s e d : boolean ;
8 f e v s t u c k a t o p e n : boolean ;
9 nev : boolean ;

10

11 DEFINE i s c l o s e d := (s t a t e = c l o s e d) ;
12 DEFINE i s o p e n := (s t a t e = open) ;
13

14 ASSIGN
15 next (s t a t e) :=
16 case
17 (cmd = cmd c losed) : c l o s e d ;
18 (cmd = cmd open) : open ;
19 TRUE : s t a t e ;
20 esac ;
21

22 ASSIGN
23 i n i t (s t a t e) := i n i t s t a t e ;

64

7.3.2 Fault Extension Instruction

We want modules Generator and Switch to be affected by faults, for the moment with no
common causes involved.
In particular, Generator shall be affected by a stuck-at effect (to off value), permanently.
For this fault one StuckAtByValue D fm with Permanent LDM does the job:

1FAULT EXTENSION FE SC TMG
2 /−− . . . −−/
3

4 EXTENSION OF MODULE Gene ra to r
5

6 /−− De s c r i p t i o n o f Fau l t S l i c e Gen StuckOf f −−/
7 SLICE Gen StuckOf f AFFECTS s t a t e WITH
8

9 /−− De s c r i p t i o n o f f a u l t mode s t u ckAt O f f −−/
10 MODE s t u ckA t O f f : Permanent StuckAtByValue D (
11 data term << o f f ,
12 data i n pu t << s t a t e ,
13 data va rou t >> s t a t e ,
14 event f a i l u r e >> f e v s t u c k a t o f f) ;

Here data value is assigned to constant off, and Generator’s variable state is the AS, and
within the fm it is read through input and written through varout.
LDM’s events failure is bound to Generator’s event fev stuck at off, and template self fix

is bound to Generator’s event nev.

Notice that parameters are bounded to the corresponding affected symbols by using the read
operator << and the write operator >>:

1 data i n pu t << s t a t e
2 data va rou t >> s t a t e

In this example, value of variable state in the NC is bounded to read value input and
write value varout. This means that current value of state can be read through input, and
can be written through varout.
Templates are instantiated by using the = operator.

Module Switch shall be affected either by a stuck-at-closed or by a stuck-at-open faults.
This requires two fms both transient. Furthermore, a GDM is defined to make possible move
from stuck-open to stuck-closed by issuing event failure in fm stuckAt Closed.

1FAULT EXTENSION FE SC TMG
2 /−− . . . −−/
3

4 EXTENSION OF MODULE Switch
5

6 /−− De s c r i p t i o n o f Fau l t Model f o r Switch −−/
7 SLICE Swi tch StuckC lo sed StuckOpen
8 AFFECTS s t a t e WITH
9

10 /−− De s c r i p t i o n o f f a u l t mode StuckAt C lo sed −−/
11 MODE s t u ckA t C l o s ed : T r an s i e n t StuckAtByValue D (
12 data term << c l o s ed ,
13 data i n pu t << s t a t e ,
14 data va rou t >> s t a t e ,
15 template s e l f f i x = s e l f f i x e d ,
16 event f a i l u r e >> f e v s t u c k a t c l o s e d ,
17 event s e l f f i x e d >> nev) ;
18

19 /−− De s c r i p t i o n o f f a u l t mode StuckAt Open −−/

65

20 MODE stuckAt Open : T r an s i e n t StuckAtByValue D (data term << open ,
21 data i n pu t << s t a t e ,
22 data va rou t >> s t a t e ,
23 template s e l f f i x = s e l f f i x e d ,
24 event f a i l u r e >> f e v s t u c k a t o p e n ,
25 event s e l f f i x e d >> nev) ;
26

27 GLOBAL DYNAMICS
28 /−− T r a n s i t i o n o f FM G loba l Dynamics −−/
29 TRANS stuckAt Open . f a u l t −[s t u c kA t C l o s ed . f a i l u r e]−> s t u ckA t C l o s ed . f a u l t ;

Code 7.5: FEI for the Switch module

Here two fms are defined, and notice the particular way transitions in the GDM are defined.
There are two special keywords nominal and fault which identify the corresponding locations
in each fm.

7.3.3 Modules and Module Instances in FEI

In the previous FEI example, all instances of modules Generator and Switch were affected.
If we want to affect a subset of their instances (or different instances in different ways),
construct FOR INSTANCES has to be used:

1FAULT EXTENSION FE SC TMG
2

3 EXTENSION OF MODULE Gene ra to r
4

5 /−− a f f e c t s on l y SC . G1 and SC . G3 −−/
6 FOR INSTANCES SC .G [1 3]
7

8 /−− . . . −−/
9

10

11 EXTENSION OF MODULE Switch
12

13 SLICE Swi tch StuckC lo sed StuckOpen
14

15 /−− a f f e c t s SC .GB1 , and a l l SC . BBs (SC .BB1 , SC .BB2 , SC .BB3) −−/
16 FOR INSTANCES SC .GB1 , SC .BB∗
17 AFFECTS s t a t e WITH
18 /−− . . . −−/

When specifying instances, list can be provided, and each entry may contain wild-card
characters (*?[...]).

Instances can be defined at two different levels:

Module (above, done for Generator) Affects specified instances for all slices which do not
specify instances explicitly.

Slice (above, done for Switch) Affects specified instances for a single slice, overriding any
instance specification done for the containing module (if any).

7.3.4 Properties

With reference to the example proposed in Chapter 7, the requirements violation can be
checked by defining some properties. We illustrate some examples below.

66

R2: if any power source is on, then all buses will be powered This requirement can
be translated into an INVARSPEC as follows:

(G1.is on | G2.is on | G3.is on) ->

(B1.is powered & B2.is powered & B3.is powered)

R4: if no power source is on, then all buses will be unpowered This requirement
can be translated into an INVARSPEC as follows:

(G1.is off & G2.is off & G3.is off) ->

(!B1.is powered & !B2.is powered & !B3.is powered)

7.3.5 Formal properties

As described in the nuXmv user manual [20], the property definition is supported at modeling
level in the following format:

[INVAR,LTL,CTL]SPEC NAME <property name> := <property>;

7.3.6 Choose Fault Templates

With reference to the example proposed in Chapter 7, there is the following faults situation:

• Generators can fail off permanently;

• Circuit Breakers can fail open or closed transitorily.

This can be obtained by modeling two Fault Slices, one for each affected variable. With
reference to the faults library defined in the appendix 3.6, the parameters needed by the faults
library used to cover the faulty behavior of Generators and Circuit Breakers are represented
in tables 7.3 and 7.4. The Fault Slice of Generators has a single Fault Mode, as depicted in
table 7.3, and this implies that it is not necessary to have a Global Dynamics description.

Differently from the Slice Model of Generators, the Circuit Breakers need the definition
of two Fault Modes, one for each faulty behavior (fail open and fail closed) as depicted in
figures 7.2(a) and 7.2(b). The transient dynamics for Circuit Breakers imposes to have an
event that occurs when the system goes back to nominal case. In the case proposed in figure 7.2
that event is called “self fix event” and it can be used at controller level if the controller has
a full observability of the system state and configuration, and this is the case proposed in the
Triple Generator Example (see Chapter 7).

Module Affected Variable Effect Model Local Dynamics

Generator state StuckAtByValue D OFF Permanent

Table 7.3: Fault Modes of the Generator

With reference to the example proposed in Chapter 7, in Figure 7.1, FEI code in 7.5 shows
the Fault Slice of the Circuit Breaker.

67

Module Affected Variable Effect Model Local Dynamics

Circuit Breaker state StuckAtByValue D OPEN Transient
Circuit Breaker state StuckAtByValue D CLOSED Transient

Table 7.4: Fault Modes of the Circuit Breakers

(a) StuckAt Open (b) StuckAt Closed

Figure 7.2: Fault Slice of Circuit Breaker

7.3.7 Result of Fault Extension

To create the extended model, run the Model Extender script:

$> cd examples / f e / t r i p l e m o d u l a r g e n e r a t o r /
$> python . . / . . / . . / s c r i p t s / extend model . py −v \

SC TMG. smv SC TMG. f e i

INFO: root : Generated XML f e i : out/SC TMG. xml
INFO: root : Generating expanded XML f e i : out/expanded SC TMG . xml
INFO: root : Generated expanded XML f e i : out/expanded SC TMG . xml
INFO: root : Generated xsap commands s c r i p t : out/ xsap extend model . cmd
INFO: root : Invoking xsap to car ry out smv extens i on o f SC TMG. smv
INFO: root : S u c c e s s f u l l y c r ea ted :
INFO: root : − Extend smv f i l e : ' out/extended SC TMG . smv '
INFO: root : − Fault modes xml f i l e : ' out/fms SC TMG . xml '

Script extend model.py has option -d which allows to specify the output directory to put
all generated files into (default: ./out).

As shown by the verbose messages (enabled by option -v), generated files are:

• file out/extended SC TMG.smv

• file out/fms SC TMG.xml

Both will be used to perform the Safety Assessment Analysis in the following section.

68

7.3.8 Safety Assessment

Generating Fault Trees

In this example, the good property we want to study is “All of the buses B1, B2 and B3 are
powered.”, which corresponds to a TLE “At least one bus B1, B2 or B3 is not powered.”

To generate a fault tree, some options are available. Here is an instance:

$> pwd
. . . / examples / f e / t r i p l e m o d u l a r g e n e r a t o r

$> python . . / . . / . . / s c r i p t s / compute ft . py −v \
−−smv− f i l e out/extended SC TMG . smv \
−−fms− f i l e out/fms SC TMG . xml \
−−prop−t ex t ' (! SC . B1 . i s powered | \

! SC . B2 . i s powered | \
! SC . B2 . i s powered) ' \

−−eng ine i c 3 −b
INFO: root : Invoking xsap to compute f a u l t t r e e
INFO: root : xsap produced f a u l t t r e e in :
INFO: root : events : ' out/extended SC TMGevents . txt '
INFO: root : ga te s : ' out/extended SC TMGgates . txt '

Remark: notice the use of single straight quotes to protect special characters for bash shell
(e.g. character !). Other shells may require different quotation characters.

The generated fault tree can then be shown with the Fault Tree Viewer:

$> python . . / . . / . . / s c r i p t s / v i e w f t . py −v \
−−events− f i l e out/extended SC TMGevents . txt \
−−gates− f i l e out/extended SC TMGgates . txt \

The Fault Tree Viewer opens and shows the fault tree:
Figure 7.3 shows one cut set where:

• G1 is stuck-at-off

• GB2 is stuck-at-open

• GB3 is stuck-at-open

In this scenario, none of the buses B1, B2 and B3 is powered.
Many cut sets are found (one is depicted in figure 7.3). Details can be found in the output

provided by xSAP which is run by the script.
A total of 26 fault trees are found, and the minimal cardinality is 3 (14 minimal cut sets

with cardinality 3, and 12 with cardinality 4):

$> cat out/ xsap compute f t . out

. . .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ STATISTICS ∗∗∗∗∗∗∗∗∗∗∗∗∗

69

Order Number Cumul
0 0 0
1 0 0
2 0 0
3 14 14
4 12 26

Command compute ft.py offers many options, and in particular it can be used with
different engines. It can also show (-s) the generated fault tree by invoking the Fault Tree
Viewer automatically when done.

Execute compute ft.py -h to see all available options.

Generating FMEA Tables

Generating a FMEA table takes one or more TLEs as inputs, and produces one file in CSV
format, with tab as separator among fields.

Figure 7.3: Fault Tree for TLE: “At least a bus is not powered”

70

There are four fields:

1. Incremental number of the cut set

2. ID of the cut set

3. Failure Modes

4. TLE

In our example, the property set is limited to the same TLE we used for generating the
fault tree: “At least one bus B1, B2 or B3 is not powered.”

We assume that the extended model has been already built into directory ./out as done
in previous steps.

From the Fault Tree, we already know that the minimal fault cardinality is 3, however we
begin with a cardinality 1 (option -N):

$> pwd
. . . / examples / f e / t r i p l e modu l a r g en e r a t o r

$>

$> python . . / . . / . . / s c r i p t s / compute fmea table . py \
−−props−t ext = '(!SC .B1 . i s powered |

! SC .B2 . i s powered |
! SC .B3 . i s powered) ' −N 1 −v

INFO: root : Invoking xsap to compute fmea tab l e
INFO: root : xsap produced fmea tab l e in : ' out/extended SC TMGfmea table . txt '
WARNING: root : The FMEA tab l e i s empty with c a r d i n a l i t y 1

The command generates an empty FMEA table as expected. Now we will increase the
cardinality to 3, and ask to show the table when done (-s):

$> python . . / . . / . . / s c r i p t s / compute fmea table . py \
−−props−t ext = '(!SC .B1 . i s powered |

! SC .B2 . i s powered |
! SC .B3 . i s powered) ' −N 3 −v −s

INFO: root : Invoking xsap to compute fmea tab l e
INFO: root : xsap produced fmea tab l e in : ' out/extended SC TMGfmea table . txt '
−−
ID : 1
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .G1 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \

(SC .G2 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \
SC.G3 . Gen StuckOff . mode i s s tuckAt Of f = TRUE))

−−
ID : 2
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .GB1. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \

(SC .G2 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \
SC.G3 . Gen StuckOff . mode i s s tuckAt Of f = TRUE))

−−
. . .
−−
ID : 14
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .GB1. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \

(SC .GB2. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \
SC.GB3. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE))

==
Total cut s e t s with c a r d i n a l i t y 3 : 14

Notice that the number of cut sets is equal to the number of cut sets found in previously
computed fault tree with cardinality 3. This happens since a FMEA table with cardinality N
includes the table with cardinality N − 1, and since the FMEA tables with cardinalities 1 and
2 are empty.

This is the result of increasing the cardinality to 4:

$> python . . / . . / . . / s c r i p t s / compute fmea table . py \
−−props−t ext = '(!SC .B1 . i s powered |

! SC .B2 . i s powered |
! SC .B3 . i s powered) ' −N 4 −v −s

71

INFO: root : Generated xsap commands s c r i p t : out/xsap compute fmea . cmd
INFO: root : Invoking xsap to compute fmea tab l e
INFO: root : xsap produced fmea tab l e in : ' out/extended SC TMGfmea table . txt '
−−
ID : 1
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .G1 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \

(SC .G2 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \
SC.G3 . Gen StuckOff . mode i s s tuckAt Of f = TRUE))

−−
ID : 2
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .GB1. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \

(SC .G2 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \
SC.G3 . Gen StuckOff . mode i s s tuckAt Of f = TRUE))

−−
. . .
−−
ID : 179
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .GB1. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \

(SC .GB1. Switch StuckClosed StuckOpen . mode i s s tuckAt Closed = TRUE & \
(SC .GB2. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \
SC.GB3. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE)))

==
Total cut s e t s with c a r d i n a l i t y 4 : 179

Total number of cut sets increased to 179, while for fault tree it was 26 (14 + 12). This
is because FMEA tables are not minimal like cut sets in fault trees, and in particular they
consider all possible faults even when (some) may be not really causing the TLE directly. For
example with cardinality 4 you will find cut sets containing 3 faults causing the problem, and
a fourth fault not really contributing, like a stuck-at-closed fault for a switch:
ID : 91
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (SC .GB1. Switch StuckClosed StuckOpen . mode i s s tuckAt Closed = TRUE & \

(SC .GB3. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE & \
(SC .G1 . Gen StuckOff . mode i s s tuckAt Of f = TRUE & \
SC.G2 . Gen StuckOff . mode i s s tuckAt Of f = TRUE)))

E.g. in the found cut set the fault:
SC.GB1. Switch StuckClosed StuckOpen . mode i s s tuckAt Closed

does not contribute to the TLE as generator G1 is broken off anyway.

As for compute ft.py, command compute fmea table.py offers many options, and in par-
ticular it can be used with different engines. Execute compute fmea table.py -h to see all
available options.

Generating MTCS

We show the computed MTCS for some selected mode transitions in the running example of
the triple generator model. As system modes we consider all configurations of the generator
modes. That is, for each G1, G2, G3 we get state either on or off. There are 8 system modes
in total, hence 56 transitions of distinct system modes. The SMV model is extended with
a new state variable mode, whose value corresponds to the actual combination of generator
modes.

The xSAP command compute mode transition cut sets is called by a provided python
script compute mtcs.py. Examples for running this python script are in Listings 7.4, 7.5, 7.6.
In Listing 7.4, all 56 transitions are analyzed and output is written in output.xml file in a
readable form, and in output.tex file, where each transition is visualized on a separate page.
The tex file needs to be built by LuaLaTeX to generate the output.pdf file with 56 pages. In
Listing 7.5, only one transition is analyzed. Again, XML and tex output are generated. The
visualized MTCS for this transition is shown in Figure 7.7(a). In Listing 7.6, two transitions
are analyzed. The textual XML output is shown in Listing 7.8 and dot visualization in
Figure 7.7(b).

72

$> python compute mtcs . py −−smv− f i l e extended SC TMG . smv
−−fms− f i l e fms SC TMG . xml
−V −g −o tex −−e x p r e s s i o n s mode

Figure 7.4: Example of a command to compute MTCS for all mode transitions. Option -V

specifies that expression is a variable.

$> python compute mtcs . py −−smv− f i l e extended SC TMG . smv
−−fms− f i l e fms SC TMG . xml
−g −e −o tex
−−e x p r e s s i o n s ”mode = o n o n o f f ” ”mode = o n o f f o f f ”

Figure 7.5: Example of a command to compute MTCS for the mode transition from on on off

to on off off. -e specifies that only transitions from the first mode to all the other are
considered.

$> python compute mtcs . py −−smv− f i l e extended SC TMG . smv
−−fms− f i l e fms SC TMG . xml
−e −o dot
−−e x p r e s s i o n s ”mode = o n o f f o f f ”

”mode = o f f o n o f f ”
”mode = o f f o f f o n ”

Figure 7.6: Example of a command to compute MTCS for the mode transition from on on off

to on off off and the mode transition from on on off to off off on.

7.3.9 Adding Common Cause

We now add CC behaviour, by adding three CC to our FEI specification:

1 COMMON CAUSES
2

3 /−− −− −−/
4 /−− F a i l u r e o f G1 f o l l ow e d by f a i l u r e o f G3 , which l e a d to a
5 sw i t c h f a i l u r e −−/
6 CAUSE CC1
7 MODULE Gene ra to r
8 FOR INSTANCES SC . G1
9 MODE Gen StuckOf f . s t u ckA t O f f WITHIN 0 . . 0 ;

10

11 MODULE Switch
12 FOR INSTANCES SC .GB2
13 MODE Swi tch StuckC lo sed StuckOpen . stuckAt Open WITHIN 3 . . 5 ;
14

15 MODULE Gene ra to r
16 FOR INSTANCES SC . G3
17 MODE Gen StuckOf f . s t u ckA t O f f WITHIN 1 . . 3 ;
18

19 /−− −− −−/
20 /−− I n s t a n t a n e ou s f a i l u r e o f g e n e r a t o r s G1 and G2 −−/
21 CAUSE CC2
22 MODULE Gene ra to r
23 FOR INSTANCES SC .G [1 2]
24 MODE Gen StuckOf f . s t u ckA t O f f WITHIN 0 . . 0 ;
25

26 /−− −− −−/
27 /−− S imu l taneous f a i l u r e o f a l l g e n e r a t o r s −−/

73

mode = on on off mode = on off off

(SC.BB2.stuck closed fault & SC.BB3.stuck closed fault)

SC.BB1.stuck closed fault

SC.GB2.stuck open fault

SC.G2.stuck off fault

(a) Visual tex output of MTCS found by command in Listing 7.5.

mode = on_off_off

mode = off_on_off

SC.GB1.stuck_open_fault SC.G1.stuck_off_fault

mode = off_off_on

SC.GB1.stuck_open_fault SC.G1.stuck_off_fault

(b) Visual dot output of MTCS found by command in Listing 7.6.

Figure 7.7: Example of visual outputs of MTCS.

28 CAUSE CC3
29 MODULE Gene ra to r
30 MODE Gen StuckOf f . s t u ckA t O f f WITHIN 1 . . 2 ;

Cause CC1 refers two Generators and one Switch, supposing that a failure break off of
instance G1, may lead to a failure of G3 as well in 1 to 3 steps, which may lead to a failure of
switch GB2 in the following 3 steps (3..5).

Cause CC2 refers two Generators (G1 and G2), meaning that both may be involved in a
single failure called CC2.

Cause CC3 models a simultaneous failure of all instances of module Generator, as the
MODULE part of the CC specification does not specify the instances explicitly, all instances
which have been extended are intended to be affected together.

When dealing with the TLE used in the example (“At least one bus B1, B2 or B3 is not
powered”), notice that:

• CC1 produces a cut set with cardinality 1, as it breaks all power lines from generators.

• CC2 produces two cut set with cardinality 2, as a stand-alone failure to the line coming
from G3 is needed together with CC2.

• CC3 produces a cut set with cardinality 1, as all generators are involved.

By adding only CC2 to the specification, this is the generated FMEA table:

74

1 <mtcs>
2 <t r a n s i t i o n >
3 <from mode>mode = o n o f f o f f </from mode>
4 <to mode>mode = o f f o n o f f </to mode>
5 <cut s e t s>
6 <cutset>
7 <event>SC.GB1. s tuck open f au l t </event>
8 </cutset>
9 <cutset>

10 <event>SC.G1 . s t u c k o f f f a u l t </event>
11 </cutset>
12 </cut s e t s>
13 </t r a n s i t i o n >
14 <t r a n s i t i o n >
15 <from mode>mode = o n o f f o f f </from mode>
16 <to mode>mode = o f f o f f o n </to mode>
17 <cut s e t s>
18 <cutset>
19 <event>SC.GB1. s tuck open f au l t </event>
20 </cutset>
21 <cutset>
22 <event>SC.G1 . s t u c k o f f f a u l t </event>
23 </cutset>
24 </cut s e t s>
25 </t r a n s i t i o n >
26 </mtcs>

Figure 7.8: XML output of MTCS found by command in Listing 7.6.

75

$> python . . / . . / . . / s c r i p t s / extend model . py −v −d out cc \
SC TMG. smv SC TMG CC. f e i

INFO: root : Generated XML f e i : out cc /SC TMG CC. xml
INFO: root : Generating expanded XML f e i : out cc /expanded SC TMG CC . xml
INFO: root : Generated expanded XML f e i : out cc /expanded SC TMG CC . xml
INFO: root : Generated xsap commands s c r i p t : out cc / xsap extend model . cmd
INFO: root : Invoking xsap to carry out smv extens ion o f SC TMG. smv
INFO: root : S u c c e s s f u l l y c reated :
INFO: root : − Extend smv f i l e : ' out cc /extended SC TMG . smv '
INFO: root : − Fault modes xml f i l e : ' out cc /fms SC TMG . xml '

$> python . . / . . / . . / s c r i p t s / compute fmea table . py −d out cc \
−−props−t ext = '(!SC .B1 . i s powered |

! SC .B2 . i s powered |
! SC .B3 . i s powered) ' −N 2 −v −s

INFO: root : Invoking xsap to compute fmea tab l e
INFO: root : xsap produced fmea tab l e in : ' out cc /extended SC TMGfmea table . txt '
−−
ID : 1
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (masterCC . CC2 . cc = TRUE & SC.G3 . Gen StuckOff . mode i s s tuckAt Of f = TRUE)
−−
ID : 2
TLE: ((! SC .B1 . i s powered | ! SC .B2 . i s powered) | ! SC .B3 . i s powered)
FMS: (masterCC . CC2 . cc = TRUE & SC.GB3. Switch StuckClosed StuckOpen . mode is stuckAt Open = TRUE)
==
Total cut s e t s with c a r d i n a l i t y 2 : 2

The result is as expected involving two failures, CC2 and a failure of G3 or GB3 in order to
break power supply coming from G3.

7.3.10 Adding Fault Probability

A numerical probability can be associated to each fm and CC. From the grammar:

<f au l t−mode> : :=
MODE <mode−id> (p robab i l i t y−value)? ' : '

<l o c a l−dynamics−model−id> <e f f e c t > ' ; '

<common−cause> : :=
CAUSE <id> (p robab i l i t y−value)?
(<cc−module−modes>)+

<probab i l i t y−value> : :=
'{ ' <r ea l−number> '} '

| '{ ' prob:< r ea l−number> '} '

real-number can be a number (0 ≤ N ≤ 1) like e.g.:

• 0.123

• 123.e-4, or 123.E-4 (IMPORTANT: notice the use of ’.’)

• 123.e-4, or 123.4e-5, or 0.001e+2, or 0.001e2

Precision is limited to 15 digits at the moment.
The value of probability can be given as a raw number, or it can be given as a named

parameter called prob. The raw form is supported for backward compatibility, while the
latter form is preferrable and should be used instead.

For example, prob:0.123e-3.

To associate a probability value to e.g. a Fault Mode of each extended instances of Generator:

1 MODE stuckAt Off {1 . e−7}: Permanent StuckAtByValue D (. . .) ;

To associate a probability value to e.g. Common Cause CC1:

1 CAUSE CC1 {1.5 e−8}
2 MODULE Generator
3 . . .

76

When no probability is specified, 0 is assumed.
Remark: specifying that a fm has 0 probability does not disable the fm itself; the proba-

bility computed for the cut sets containing that fm will be set to be 0, but those cut sets will
still appear in fault trees and FMEA tables.

When extending the model, the produced Fault modes xml file will contain probability
information associated to each single module instance which is affected by the extension. E.g:

1 <?xml version=” 1.0 ”?>
2 <compass>
3 <fm l i s t>
4 <fm name=” SC .G3 . Gen StuckOff . mode i s s tuckAt Of f ” nominal va lue=”FALSE” p robab i l i t y=” 1 . e−7”/>
5 <fm name=” SC .G2 . Gen StuckOff . mode i s s tuckAt Of f ” nominal va lue=”FALSE” p robab i l i t y=” 1 . e−7”/>
6 <fm name=” SC .G1 . Gen StuckOff . mode i s s tuckAt Of f ” nominal va lue=”FALSE” p robab i l i t y=” 1 . e−7”/>
7 <fm name=” masterCC . CC1 . cc ” nominal va lue=”FALSE” p robab i l i t y=” 1 .5 e−8”/>
8 </ fm l i s t>
9

10 <o b s l i s t>
11 </ o b s l i s t>
12 </compass>

The analysis will use this XML file as input, so changing probability values (on a per-instance
basis) within it will propagate values to the analysis results.

7.3.11 Latent Faults

Being latent is a property of fault modes. A Fault Mode can be declared to be possibly latent
(with an associated latent probability) with:

<f au l t−mode> : :=
MODE <mode−id> (p robab i l i t y−value−mode)? <colon>

<l o c a l−dynamics−model−id> <e f f e c t > <semi−colon>

<probab i l i t y−value−mode> : :=
<lbra> <r ea l−number> (, l a t en t : yes | no , l a t en t p rob :< r ea l−number>)?<rbra>
| <lbra> prob:< r ea l−number> (, l a t en t : yes | no , l a t en t p rob :< r ea l−number>)?<rbra>

The latent-property is specified along with the Fault Mode probability. For example:

1

2 EXTENSION OF MODULE Generator
3 SLICE Gen StuckOff AFFECTS s t a t e WITH
4

5 MODE stuckAt Off {prob : 1 . e−7, l a t en t : yes , l a t en t p rob : 1 . e−6} :
6 Permanent StuckAtByValue D (. . .) ;

In this example stuckAt Off can be latent, and has a latent fault probability of 1.e-6.
Notice that Common Causes cannot be declared to be latent.

7.4 TFPG Analysis

7.4.1 Associations file

A TFPG associations file has been created depending on the description contained at the
beginning of Chapter 7. Here an extract of the complete example stored in
file examples/fe/triple modular generator/tfpg/SC TMG.axml is shown.

1 <a s s o c i a t i o n s>
2 <fa i lureModes>
3 <!−− genera to r : s tuck o f f −−>
4 <as soc id=”G1 s tuck o f f ” expr=”SC.G1 . Gen StuckOff . mode i s s tuckAt Of f”/>
5 <!−− c i r c u i t breaker s : s tuck open −−>
6 <as soc id=”GB1 stuck open”
7 expr=”SC.GB1. Switch StuckClosed StuckOpen . mode is stuckAt Open”/>
8 <as soc id=”BB1 stuck open”
9 expr=”SC.BB1 . Switch StuckClosed StuckOpen . mode is stuckAt Open”/>

77

10 <!−− c i r c u i t breaker s : s tuck c l o s ed −−>
11 <as soc id=”GB1 stuck c losed ”
12 expr=”SC.GB1. Switch StuckClosed StuckOpen . mode i s s tuckAt Closed”/>
13 <as soc id=”BB1 stuck c losed ”
14 expr=”SC.BB1 . Switch StuckClosed StuckOpen . mode i s s tuckAt Closed”/>
15 </fa i lureModes>
16 <monitoredDiscrepanc ies>
17 <!−− t r i p l e power gene ra t i on : th ree gene ra to r s are on −−>
18 <as soc id=”TriplePowerUsage” expr=”count (SC .G1 . i s on , SC .G2 . i s on , SC .G3 . i s o n) = 3”/>
19 </monitoredDiscrepanc ies>
20 <unmonitoredDiscrepancies>
21 <as soc id=”B1 broken” expr=”SC.B1 . i s b r oken”/>
22 <as soc id=”InconsPowerUsage”
23 expr=”count (SC .G1 . i s on , SC .G2 . i s on , SC .G3 . i s o n) > ; 0 & ;
24 count (SC .B1 . i s powered , SC .B2 . i s powered , SC .B3 . i s powered) &l t ; 3”/>
25 </unmonitoredDiscrepancies>
26 <tfpgModes>
27 <as soc id=”R1”
28 expr=”(SC .GB1. i s open & ; SC .GB2. i s c l o s e d & ;
29 SC.GB3. i s c l o s e d & ; SC .BB1 . i s open & ;
30 SC.BB2 . i s c l o s e d & ; SC .BB3 . i s open)”/>
31 </tfpgModes>
32 </a s s o c i a t i o n s>

For each Generator a failure mode stuck off is created to represent the scenario in which
a Generator breaks and propagates a failure through event fev stuck at off. Additionally,
two failure modes are added for each Circuit Breaker to depict the two admitted failure
events, fev stuck at closed and fev stuck at open.

The discrepancy TriplePowerUsage is used to monitor the situation in which all the
generators are powered on, while other discrepancies are included to check whether a bus is
broken (e.g. B1 broken) or whether the power usage is inconsistent, i.e. some generator is
working but not all buses are powered. These are some off-nominal conditions according to
the system requirements described in Section 7.1.3.

Finally, the system mode R1 is used to denote a specific switching configuration of the
circuit breakers.

7.4.2 Synthesis

The associations file described in the previous section can be used to synthesize a TFPG for
the running example. To do that, the SMV model extended SC TMG.smv previously generated
using the script extend model.py needs to be used. The following command can be run for
TFPG synthesis:

$> cd examples / f e / t r i p l e m o d u l a r g e n e r a t o r / t fpg
$> python . . / . . / . . / . . / s c r i p t s / s y n t h e s i z e t f p g . py −a \

SC TMG. axml −m . . / out/extended SC TMG . smv \
−o SC TMG synthesized . txml −−eng ine i c 3 −b −B −c

For a complete description of script arguments see Section C.7.3. Depending on the model
at hand, some engine settings might give better performance.

Result of synthesis

Here we show a possible result of a synthesis run. Any problems such as isolated failure mode
nodes are reported at this output level.

78

1 t fpg s yn th e s i s > minimal cut s e t a n a l y s i s
2 −−> Fa i l u r e modes l i s t dumped to out/ extended SC TMG sa fm list . xml
3 −−> Extended model dumped to ' out/extended SC TMG synth extended . smv '
4 d i sc repancy 1/2 (TriplePowerUsage)
5 d i sc repancy 2/2 (InconsPowerUsage)
6 t fpg s yn th e s i s > va l i d a t i n g node names and cut s e t s
7 t fpg s yn th e s i s > pro c e s s i ng unreachable d i s c r e p an c i e s
8 t fpg s yn th e s i s > pro c e s s i ng f a i l u r e mode nodes
9 f a i l u r e mode 'GB1 stuck open ' has no e f f e c t on d i s c r e p an c i e s with in the ana l y s i s bound .

10 f a i l u r e mode 'GB2 stuck open ' has no e f f e c t on d i s c r e p an c i e s with in the ana l y s i s bound .
11 f a i l u r e mode 'GB3 stuck open ' has no e f f e c t on d i s c r e p an c i e s with in the ana l y s i s bound .
12 t fpg s yn th e s i s > check ing f o r independent d i s c r e p an c i e s
13 t fpg s yn th e s i s > check ing f o r c o r r e l a t e d d i s c r e p an c i e s
14 t fpg s yn th e s i s > c r e a t i n g c au s a l i t y graph
15 t fpg s yn th e s i s > c a l l i n g graph s imp l i f i c a t i o n r ou t i n e s
16 t fpg s yn th e s i s > wr i t i ng r e s u l t to f i l e
17 t fpg f i l e : SC TMG synthesized . txml

The generated TFPG can then be shown with the TFPG Viewer:

$> cd examples / f e / t r i p l e modu l a r g en e r a t o r / t fpg
$> python . . / . . / . . / . . / s c r i p t s / v i ew t fpg . py −t SC TMG synthesized . txml

The TFPG Viewer opens and shows the TFPG:
The viewer offers the possibility of loading, saving and exporting a TFPG using the ’File’

menu, while with the ’Edit’ menu it is possible to edit the shown TFPG. In this case, an
external editor with the textual representation of the TFPG is opened; to see the changes in
the viewer the user must save and close the editor. Additionally, the toolbar allows to move,
zoom and reset the shown TFPG.

7.4.3 Behavioral Validation

The synthesized TFPG can be validated using the validate tfpg behavior.py script. This
can be done running the following command:

$> cd examples / f e / t r i p l e m o d u l a r g e n e r a t o r / t fpg
$> python . . / . . / . . / . . / s c r i p t s / v a l i d a t e t f p g b e h a v i o r . py −a \

SC TMG. axml −m . . / out/extended SC TMG . smv −k 20 −b \
−−t fpg− f i l e SC TMG synthesized . txml

Result of behavioral validation

An example output for behavioral validation is shown as follows.

1 > extended smv model c r ea ted (. . . / out/ extended SC TMG bv extended completeness . smv)
2 > 5 proo f o b l i g a t i o n s generated (. . . / out/ extended SC TMG proof ob l igat ions completeness . txt)
3

4 > check ing proo f o b l i g a t i o n 1/5 . . . s a t i s f i e d (with in bound)
5 > check ing proo f o b l i g a t i o n 2/5 . . . s a t i s f i e d (with in bound)
6 > check ing proo f o b l i g a t i o n 3/5 . . . s a t i s f i e d (with in bound)
7 > check ing proo f o b l i g a t i o n 4/5 . . . s a t i s f i e d (with in bound)
8 > check ing proo f o b l i g a t i o n 5/5 . . . s a t i s f i e d (with in bound)
9

10 −−−
11 Result : The TFPG i s complete with r e sp e c t to the model (with in ana l y s i s bound) .
12 −−−

79

Figure 7.9: TFPG for file “SC TMG synthesized.txml”

7.4.4 Tightening

The synthesized TFPG can also be tightened using the tighten tfpg.py script. This can be
done running the following command:

$> cd examples / f e / t r i p l e m o d u l a r g e n e r a t o r / t fpg
$> python . . / . . / . . / . . / s c r i p t s / t i g h t e n t f p g . py −a SC TMG. axml \

−t SC TMG synthesized . txml −m . . / out/extended SC TMG . smv

Note that the TMG use case is untimed, thus only mode labels will be tightened.

Result of tightening

An example output for tightening is shown as follows. Some output has been omitted for
brevity. The user is continuously informed how many parameters remain to be tightened.

1 TFPG Tightening

80

2

3 > sk ipp ing t i gh t en ing o f parameter ' tmin '
4 > sk ipp ing t i gh t en ing o f parameter ' tmax '
5

6 > i n i t i a l completeness check
7 > given TFPG i s complete
8

9 > t i gh t en ing o f modes
10 44 parameters remaining . .
11 43 parameters remaining .
12 42 parameters remaining .
13 [. . .]
14 15 parameters remaining . .
15 14 parameters remaining
16 13 parameters remaining
17

18 > i n s t a n t i a t i n g t i ghtened TFPG
19

20 −−
21 Result : The TFPG has been t ightened .
22 Output f i l e : out/SC TMG synthesized tight . txml
23 −−

7.4.5 Statistics Information

The TFPG synthesized in the previous sections, can be used in order to retrieve some statistical
information. Syntactical analysis can be performed by running:

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg
2 $> python . . / . . / . . / . . / s c r i p t s / s t a t s t f p g . py SC TMG synthesized . txml −s

This produces the following output, showing the number and types of nodes, edges and
modes contained in the TFPG:

1 Al l Nodes : 11
2 FM Nodes : 6
3 AND Nodes : 4
4 OR Nodes : 1
5

6 Monitored Nodes : 1
7 Unmonitored Nodes : 4
8

9 Edges : 11
10

11 Modes : 4

7.4.6 Possibility, Necessity, Consistency and Activability

Possibility

Once we have synthesized our TFPG, we may want to check whether some traces are com-
patible or not with it.

The following trace says that, once the failure BB3 stuck open is activated, as soon as the
failure BB2 stuck open is activated, so is TriplePowerUsage:

1 #BB3 stuck open True
2 BB3 stuck open 0
3 #BB2 stuck open True
4 BB2 stuck open 1
5 #TriplePowerUsage True
6 TriplePowerUsage 1

81

Indeed, running the following command:

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg /smt
2 $> python . . / . . / . . / . . / . . / s c r i p t s / check t fpg . py −−open− i n f i n i t y
3 −−p o s s i b i l i t y −−s c ena r i o s cen 1 . sc . . / SC TMG synthesized . txml

we obtain a partial trace satisfying the scenario:

1 The s c ena r i o i s p o s s i b l e !
2 A model i s :
3 #intermediateNode 2 := True
4 #intermediateNode 3 := Fal se
5 #intermediateNode 4 := Fal se
6 BB3 stuck open := 0 .0
7 intermediateNode 4 := 3/2
8 #InconsPowerUsage := True
9 intermediateNode 2 := 1 .0

10 intermediateNode 3 := 0 .0
11 GB3 stuck open := 0 .0
12 #TriplePowerUsage := True
13 #BB1 stuck open := False
14 BB1 stuck open := 2 .0
15 GB1 stuck open := 0 .0
16 GB2 stuck open := 0 .0
17 #GB2 stuck open := Fal se
18 TriplePowerUsage := 1 .0
19 #BB3 stuck open := True
20 BB2 stuck open := 1 .0
21 InconsPowerUsage := 1 .0
22 #BB2 stuck open := True
23 #GB3 stuck open := Fal se
24 #GB1 stuck open := Fal se

On the other side, if we run the same check with the following scenario, which states that
Triple Power Usage can be activated before than BB2 stuck open, we get that the specified
scenario is not possible.

1 #BB3 stuck open True
2 BB3 stuck open 0
3 #BB2 stuck open True
4 BB2 stuck open 1
5 #TriplePowerUsage True
6 TriplePowerUsage 0

Necessity

Necessity is useful in case we want to check whether a particular scenario is implied by our
TFPG; suppose to have the following simple scenario:

1 #TriplePowerUsage True

We are saying that the discrepancy Triple Power Usage is activated (no matter when);
we can use the necessity check to verify that this is not implied by our TFPG, i.e. that the
discrepancy is not always activated.

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg /smt
2 $> python . . / . . / . . / . . / . . / s c r i p t s / check t fpg . py −−open− i n f i n i t y
3 −−n e c e s s i t y −−s c ena r i o s cen 2 . sc . . / SC TMG synthesized . txml

As expected, this is not the case:

1 The s c ena r i o i s NOT nece s sa ry !
2 A counterexample s c ena r i o i s :
3 #intermediateNode 2 := Fal se
4 #intermediateNode 3 := Fal se

82

5 #intermediateNode 4 := Fal se
6 BB3 stuck open := 0 .0
7 intermediateNode 4 := −1.0
8 #InconsPowerUsage := Fal se
9 intermediateNode 2 := −1.0

10 intermediateNode 3 := −1.0
11 GB3 stuck open := 0 .0
12 #TriplePowerUsage := False
13 #BB1 stuck open := False
14 BB1 stuck open := 0 .0
15 GB1 stuck open := 0 .0
16 GB2 stuck open := 0 .0
17 #GB2 stuck open := Fal se
18 TriplePowerUsage := 1 .0
19 #BB3 stuck open := False
20 BB2 stuck open := 0 .0
21 InconsPowerUsage := −2.0
22 #BB2 stuck open := False
23 #GB3 stuck open := Fal se
24 #GB1 stuck open := Fal se

Consistency

We can check whether our TFPG is consistent (i.e. there is at least a complete trace for it)
by running the following command:

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg /smt
2 $> python . . / . . / . . / . . / . . / s c r i p t s / check t fpg . py −−open− i n f i n i t y
3 −−con s i s t ency . . / SC TMG synthesized . txml
4 $> The TFPG i s c on s i s t e n t !

Activability

At last, we can check that all the nodes of our TFPG can be activated; this can be verified by
executing the following command:

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg /smt
2 $> python . . / . . / . . / . . / . . / s c r i p t s / check t fpg . py −−open− i n f i n i t y
3 −−a c t i v a b i l i t y . . / SC TMG synthesized . txml
4 $> Checking i f a l l nodes can be ac t i va t ed . . .
5 Al l nodes can be ac t i va t ed !

7.4.7 Diagnosis

Consider the following scenario, in which our observations refer to the failures BB2, BB3,
TriplePowerUsage and to the mode R3.

1 #BB3 stuck open True
2 #BB2 stuck open True
3 #TriplePowerUsage True
4 #mode R3

We may want to enumerate all possible sets of failure modes compatible with the observa-
tions; this can be done using the following command:

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg /smt
2 $> python . . / . . / . . / . . / . . / s c r i p t s / compute t fpg d iagnos i s . py −−open− i n f i n i t y
3 −−d i a gn o s ab i l i t y −d scen 3 . sc . . / SC TMG synthesized . txml

As a result, we obtain all the possible combinations of the remaining failures (BB1, GB1,
GB2 and GB3).

83

1 Getting a l l the d iagnose s . . .
2 16 d iagnose s found .
3 −−−−−−
4 #BB3 stuck open := True
5 #mode := R3
6 #GB3 stuck open := Fal se
7 #GB2 stuck open := Fal se
8 #GB1 stuck open := Fal se
9 #BB2 stuck open := True

10 #BB1 stuck open := False
11 −−−−−−
12 #BB3 stuck open := True
13 #mode := R3
14 #GB3 stuck open := Fal se
15 #GB2 stuck open := Fal se
16 #GB1 stuck open := True
17 #BB2 stuck open := True
18 #BB1 stuck open := False
19 −−−−−−
20 . . .

This corresponds to what we would expect, because in our synthesized TFPG the mode
R3 is enabled in all edges.

If we manually edit our TFPG by removing R3 from the modes in the edges having desti-
nation TriplePowerUsage, we will se that no diagnosis is found, as in this case it is impossible
to activate TriplePowerUsage remaining in mode R3.

7.4.8 Refinement

Suppose now that we want to restrict the set of possible behaviors of our synthesized TFPG.
We can create another TFPG (see:
file examples/fe/triple modular generator/tfpg/smt/SC TMG refined.tfpg) and check
whether it is a refinement of the original one.

As we can see, the new TFPG is built on top of the synthesized one, with the following
changes:

• intermediate nodes have been renamed

• max time for the InconsPowerUsage has been set to 1.0

• modes over edges have been changed

We can verify that this new tfpg is a refinement of the original synthesized one by running
the following command:

1 $> cd example/ f e / t r i p l e modu l e g en e r a t o r / t fpg /smt
2 $> python . . / . . / . . / . . / . . / s c r i p t s / che ck t f pg r e f i n ement . py −m mapping . txt
3 −r . . / SC TMG synthesized . txml −−open− i n f i n i t y SC TMG refined . t fpg
4 $> Checking the re f inement . . .
5 The given TFPG i s a re f inement o f o r i g i n a l t f p g

7.4.9 Filtering

Whereas refinement validates a manual manipulation of a given TFPG, xSAP also provides
automatic means to manipulate TFPGs. In the running example, for instance, we might be
interested only in the paths leading to the discrepancy TriplePowerUsage. A TFPG containing
only those paths can be created as follows:

84

1 $> cd examples / f e / t r i p l e modu l a r g en e r a t o r / t fpg
2 $> python . . / . . / . . / . . / s c r i p t s / f i l t e r t f p g . py −t SC TMG synthesized . txml \
3 −− f i l t e r −ac t i on focus −−focus−nodes TriplePowerUsage

The command will give the following output:

1 TFPG F i l t e r i n g> computing r e a c h a b i l i t y s e t
2 TFPG F i l t e r i n g> removing nodes from which focus nodes cannot be reached
3 TFPG F i l t e r i n g> dumping r e s u l t
4

5 −−
6 The f i l t e r e d TPFG f i l e has been saved at ' out/SC TMG synthesized focused . txml '
7 −−

The resulting TFPG contains only the failure mode nodes B2 stuck open and BB3 stuck open,
as well as the discrepancy TriplePowerUsage.

Figure 7.10: TFPG restricted to paths leading to TriplePowerUsage.

Figure 7.11: TFPG with a redundant edge.

Similarly, the script can be used to remove redundant edges on given TFPGs. For instance,
consider the TFPG in Figure 7.11.

The edge from fault to critical is redundant. Invoking the script as follows will produce a
new TFPG, where the redundant edge has been removed:

1 $> cd examples / f e / t r i p l e modu l a r g en e r a t o r / t fpg
2 $> python . . / . . / . . / . . / s c r i p t s / f i l t e r t f p g . py −t SC TMG synthesized . txml \
3 −− f i l t e r −ac t i on s imp l i f y

85

As the simplification routines inside xSAP assume maximally permissive edges, this sim-
plification functionality will only be executed if all edges have tmin = 0, tmax = +∞ and the
modes set to all modes known to the TFPG.

7.5 Fault Detection and Isolation

Fault Detection and Isolation (FDI) analysis is performed using the extended version of the
Triple Module Generator model. In this model, the FDI model has been removed, as our goal
is to synthesize it automatically from an FDI specification. The modified version can be found
under file examples/FDI/extended SC TMG empty controller.smv.

In the next sections, we exemplify the different analyses separately.

7.5.1 Diagnosability analysis

As an example, we try to detect the generic fault for the generator G1. We expect that,
knowing the received command and the state of G1, we should be able to successfully detect
it. Hence, the observables file can be defined as follows:

1 SC.G1 . s t a t e
2 CN. cmd G1

The specific condition we want to diagnose is SC.G1.Gen StuckOff.mode != NOMINAL, i.e.
that G1 is failed at “StuckOff”.

To run diagnosability, we can use the Python script provided by xSAP:

1 $> cd examples /FDI/ diag
2 $> python . . / . . / . . / s c r i p t s / ch e c k d i a gno s ab i l i t y . py −m . . / extended SC TMG empty control ler . smv
3 −a f i n i t e −c ”SC .G1 . Gen StuckOff .mode != NOMINAL” −o G1 observables . obs

The check fails, and provides a pair of traces as counterexample; the fault occurs on the
first trace but never on the second one, and yet both traces produce the same observations.
We can see on the traces that after the fault the generator is never sent the command cmd on,
thus by observing only its state it is impossible to say whether the fault occurred or not. The
traces can be rendered graphically using the script view trace.py, as shown in appendix C.8.1.

We could however make an assumption on the environment or external controller that is
not included in our model, and say that this command is sent periodically within a bound of
5 time units. Under this context restriction, the problem is indeed diagnosable within a delay
bound of 5 time units.

In the previous example invoking the diagnosability script we specified the alarm condition
directly on the command line. For the check with the context we now show how a specification
file can be used instead (see Figure 7.12).

1 NAME: alarm G1
2 CONDITION: SC .G1 . Gen StuckOff . mode != NOMINAL
3 TYPE: f i n i t e
4 CONTEXT: G F [0 , 5] CN. cmd G1 = cmd on

Figure 7.12: ASL file for diagnosability check with context.

Dignosability is then launched as follows.

86

1 $> python . . / . . / . . / s c r i p t s / ch e c k d i a gno s ab i l i t y . py −m . . / extended SC TMG empty control ler . smv
2 −o G1 observables . obs −−as l− f i l e G1 with context . a s l

7.5.2 Minimum observables set analysis

We now want to check whether the observables we previously used are the minimum set needed
to detect the fault of the generator G1; moreover, we want to check whether it is the only
configuration which allows to detect it, or alternative configurations are possible. We increase
for this analysis the set of observables that should be considered:

1 SC.G1 . s t a t e
2 CN. cmd G1
3 SC.G2 . s t a t e
4 CN. cmd G2
5 SC.G3 . s t a t e
6 CN. cmd G3
7 SC.GB1. s t a t e
8 CN. cmd GB1
9 SC.GB2. s t a t e

10 CN. cmd GB2
11 SC.GB3. s t a t e
12 CN. cmd GB3
13 SC.BB1 . s t a t e
14 CN. cmd BB1
15 SC.BB2 . s t a t e
16 CN. cmd BB2
17 SC.BB3 . s t a t e
18 CN. cmd BB3
19 SC. B1 poweredby G3 R
20 SC. B1 poweredby G3 L
21 SC. B1 poweredby G2 R
22 SC. B1 poweredby G2 L
23 SC. B1 poweredby G1 U
24 SC. B2 poweredby G3 R
25 SC. B2 poweredby G3 L
26 SC. B2 poweredby G2 U
27 SC. B2 poweredby G1 R
28 SC. B2 poweredby G1 L
29 SC. B3 poweredby G3 U
30 SC. B3 poweredby G2 R
31 SC. B3 poweredby G2 L
32 SC. B3 poweredby G1 R
33 SC. B3 poweredby G1 L
34 SC. B1 poweredby G3
35 SC. B1 poweredby G2
36 SC. B1 poweredby G1
37 SC. B2 poweredby G3
38 SC. B2 poweredby G2
39 SC. B2 poweredby G1
40 SC. B3 poweredby G3
41 SC. B3 poweredby G2
42 SC. B3 poweredby G1
43 SC.B1 . s t a t e
44 SC.B2 . s t a t e
45 SC.B3 . s t a t e

To run minimum observables set generation, we can run the following script provided by
xSAP. The arguments are the same as for diagnosability checking, but now instead of verifying
the observables we want to optimize them.

1 $> cd examples /FDI/ diag
2 $> python . . / . . / . . / s c r i p t s /min imize obse rvab l e s . py −m . . / extended SC TMG empty control ler . smv
3 −a bounded −d 5 −c ”SC .G1 . Gen StuckOff . mode != NOMINAL”
4 −x ”G F [0 , 5] CN. cmd G1 = cmd on” −o f u l l o b s e r v a b l e s . obs

87

The result consists of the following set:

1) -------------------------

> SC.G1.state

cost: 1

Note that the minimization procedure concludes that the command signal doesn’t need
to be observed, by assumption of context. The fault can thus be diagnosed by observing the
state of generator G1, and triggering the alarm if it is off for more than 5 time units.

7.5.3 Synthesis of a diagnoser

A diagnoser for the generator G1 can be generated running the following xSAP commands.
First we specify the definition of the observables and the alarms (associated with the fault we
want to diagnose), and then we run the synthesis and write the generated model. The alarm
specification file contains the following:

1 NAME: alarm G1
2 CONDITION: SC.G1 . Gen StuckOff . mode != NOMINAL
3 TYPE: f i n i t e
4 CONTEXT: G F (CN. cmd G1 = cmd on)

In this particular case, we can omit the context and obtain the same diagnoser. However,
the validation properties will show us that without context, we cannot always raise the alarm.

1 $> cd examples /FDI/ synth
2 $> python . . / . . / . . / s c r i p t s / s yn t h e s i z e f d . py −m . . / extended SC TMG empty control ler . smv \
3 −o G1 observables . obs −f G1 . a s l −−out− f i l e G1 synthes ized model . smv

where G1 observables.obs contains the observables of the system, and G1.asl contains the
alarm specification.

The generated model, called G1 synthesized model.smv, consists of the original model com-
bined with the synthesized FDI module. An excerpt of the model is presented here:

1MODULE FD (”CN. cmd G1” , ”SC . G1 . s t a t e ”)
2 VAR
3 s t a t e : 1 . . 13 ;
4

5 DEFINE
6 Ualarm G1 := ((s t a t e = 4 | s t a t e = 7) | s t a t e = 11) ;
7 Knalarm G1 := (((s t a t e = 2 | s t a t e = 9) | s t a t e = 5) | s t a t e = 1) ;
8 Kalarm G1 := ((((s t a t e = 8 | s t a t e = 3) | s t a t e = 10) | s t a t e = 12) |
9 s t a t e = 6) ;

The parameters of the FD module are the observables we previously specified. The
variable state is used to take into account all the possible states of the diagnoser; the system
evolves depending on the possible combinations of the values of the observables.

Three DEFINE (Ualarm G1, Knalarm G1 and Kalarm G1) statements are added (notice
that alarm G1 is the name we specified for the alarm) that define the states in which the
fault expression is satisfied (Kalarm G1), it is not satisfied (Knalarm G1) or it is unknown
(Ualarm G1).

7.5.4 Effectiveness analysis

To validate the previous diagnoser (G1 synthesized model.smv) we can model check the fol-
lowing three properties, that are automatically generated by the synthesis routines:

88

1. LTLSPEC G (myfdir.myfd.Knalarm G1 ->

!(O SC.G1.Gen StuckOff.mode != NOMINAL))

2. LTLSPEC G (myfdir.myfd.Kalarm G1 ->

O SC.G1.Gen StuckOff.mode != NOMINAL)

3. LTLSPEC (G (SC.G1.Gen StuckOff.mode != NOMINAL ->

F myfdir.myfd.Kalarm G1))

The first and second properties are correctness properties, and they should be valid for
any synthesized diagnoser. The first property states that it is never the case that the fault
occurred in the past, if the diagnoser knows for sure that it did not. The second property
states that if the diagnoser knows for sure that the fault occurred, then it did indeed occur in
the past. As expected, both properties hold.

The third property expresses completeness and holds if the given fault is diagnosable, not
considering context. It encodes the fact that, if the system is in a state in which the mode is
not nominal, eventually the corresponding fault alarm will be raised. This property doesn’t
hold in the model, since other behaviors outside the context are possible. However, when
adding the context to the property, the proof obligation holds, indeed also within the time
bound 5:

• (G F [0,5] CN.cmd G1 = cmd on) ->

G (SC.G1.Gen StuckOff.mode != NOMINAL -> F [0,5] myfdir.myfd.Kalarm G1)

89

Chapter 8

Conclusions and Future Directions

xSAP is a system that supports a formal, Model-Based Safety Assessment with along two
main directions: symbolic fault extension, that allows the user to automatically obtain an
model including the faulty behaviours from a source, nominal model; and procedures for
safety analysis, such as FTA and FMEA, that allow the user to analyze the system under
fault.

In the subsequent releases, the following extensions to xSAP will be considered. First,
it will be instrumented to deal with asynchronous composition, and with continuous-time
models [17]. Second, xSAP be extended to deal with fault-extension for a contract-based
design flow, as described in [14]. Finally, xSAP will integrate capabilities for the analysis of
reliability architectures [12, 13].

An extension to the probabilistic setting, as supported by the COMPASS toolset [11], is
currently under consideration.

90

References

[1] Sherif Abdelwahed, Gabor Karsai, and Gautam Biswas. System diagnosis using hybrid
failure propagation graphs. In The 15th International Workshop on Principles of Diag-
nosis. Citeseer, 2004.

[2] Sherif Abdelwahed, Gabor Karsai, Nagabhushan Mahadevan, and Stanley C Ofsthun.
Practical implementation of diagnosis systems using timed failure propagation graph
models. Instrumentation and Measurement, IEEE Transactions on, 58(2):240–247, 2009.

[3] Erika Ábrahám and Klaus Havelund, editors. Tools and Algorithms for the Construc-
tion and Analysis of Systems - 20th International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in
Computer Science. Springer, 2014.

[4] Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, and Gianni Zampedri. Auto-
mated Verification and Tightening of Failure Propagation Models. In AAAI, 2016.

[5] M. Bozzano, A. Cimatti, C. Mattarei, and A. Griggio. Efficient Anytime Techniques for
Model-Based Safety Analysis. In CAV, pages 603–621, 2015.

[6] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic fault tree analysis for reactive systems.
In Automated Technology for Verification and Analysis (ATVA), volume 4762 of LNCS,
pages 162–176. Springer, 2007.

[7] M. Bozzano, P. Munk, M. Schweizer, S. Tonetta, and V. Vozarova. Model-Based Safety
Analysis of Mode Transitions. In SafeComp, pages X–X, 2020.

[8] Marco Bozzano, Alessandro Cimatti, Marco Gario, and Andrea Micheli. SMT-based
validation of timed failure propagation graphs. In AAAI, 2015.

[9] Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal design of
fault detection and identification components using temporal epistemic logic. In Ábrahám
and Havelund [3], pages 326–340.

[10] Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal design
of asynchronous FDI components using temporal epistemic logic. Logical Methods in
Computer Science, 2015.

[11] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas
Noll, and Marco Roveri. Safety, dependability and performance analysis of extended aadl
models. Comput. J., 54(5):754–775, 2011.

91

[12] Marco Bozzano, Alessandro Cimatti, and Cristian Mattarei. Automated analysis of reli-
ability architectures. In ICECCS, pages 198–207. IEEE, 2013.

[13] Marco Bozzano, Alessandro Cimatti, and Cristian Mattarei. Efficient analysis of reliability
architectures via predicate abstraction. In Valeria Bertacco and Axel Legay, editors, Haifa
Verification Conference, volume 8244 of Lecture Notes in Computer Science, pages 279–
294. Springer, 2013.

[14] Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, and Stefano Tonetta. Formal
safety assessment via contract-based design. In International Symposium on Automated
Technology for Verification and Analysis, 2014.

[15] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro
Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv
symbolic model checker. In Armin Biere and Roderick Bloem, editors, CAV, volume 8559
of Lecture Notes in Computer Science, pages 334–342. Springer, 2014.

[16] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Ic3 modulo
theories via implicit predicate abstraction. In Ábrahám and Havelund [3], pages 46–61.

[17] The HyCOMP system. https://es-static.fbk.eu/tools/hycomp/.

[18] Gabor Karsai, Sherif Abdelwahed, and Gautam Biswas. Integrated diagnosis and control
for hybrid dynamic systems. In AIAA Guidance, AIAA Guidance, Navigation and Control
Conference, Austin, Texas (August 2003), 2003.

[19] Amit Misra and J Sztipanovits. Diagnosability of dynamical systems. 1992.

[20] The nuXmv user manual. Available at http://nuxmv.fbk.eu.

[21] Space product assurance: Failure modes, effects (and criticality) analysis
(FMEA/FMECA). ECSS Standard Q-ST-30-02C, European Cooperation for Space
Standardization, March 2009.

[22] Space product assurance: Dependability. ECSS Standard Q-ST-30C, European Cooper-
ation for Space Standardization, March 2009.

[23] Space product assurance: Fault tree analysis – adoption notice ECSS/IEC 61025. ECSS
Standard Q-ST-40-12C, European Cooperation for Space Standardization, July 2008.

[24] Space product assurance: Safety. ECSS Standard Q-ST-40C, European Cooperation for
Space Standardization, March 2009.

[25] SAE. ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment, December 1996.

92

https://es-static.fbk.eu/tools/hycomp/
http://nuxmv.fbk.eu

Appendix A

Installation

This chapter describes the necessary hardware/software configuration needed to run the xSAP
tool and how to stay up to date with the latest updates.

A.1 Prerequisites

Since both Windows (64 bit and 32 bit) and Linux (64 bit) platforms are supported, and since
Windows and Linux have very different packaging and installation procedures, and come with
a largely different base of software, prerequisites are described separately in this section, for
Linux and Windows systems.

Important: In directory scripts there is file check installation.py which runs a set of
tests to check installation requirments. Run it when done with the installation for a sanity
check.

A.1.1 Platform-independent

SDEs All SDEs are Eclipse components which can be updated from this site: https://

es-static.fbk.eu/tools/devel_sde/

Requisite: Eclipse Neon (https://projects.eclipse.org/releases/neon)

A.1.2 Microsoft Windows (64 bit and 32 bit)

nuXmv, ocra and xSAP ocra, nuXmv and xSAP executables are statically linked, or
when needed are shipped along with libraries they need.ma

However, a preprocessors like “cpp” and/or “m4” should be installed as separate packages.
For “cpp”, see for example GNU CPP at https://gcc.gnu.org/. For a binary executable
see e.g. http://tdm-gcc.tdragon.net/download and select the version corresponding to the
desired architecture (64 or 32 bit).

Scripts Scripts are all located in top-level directory file scripts.
To execute them, a Python 2.7.x interpreter is needed. It can be downloaded from here:

https://www.python.org/ftp/python/2.7.8/python-2.7.8.amd64.msi

93

https://es-static.fbk.eu/tools/devel_sde/
https://es-static.fbk.eu/tools/devel_sde/
https://projects.eclipse.org/releases/neon
https://gcc.gnu.org/
http://tdm-gcc.tdragon.net/download
https://www.python.org/ftp/python/2.7.8/python-2.7.8.amd64.msi

Viewers All requisites for running scripts, plus:

lxml Install selecting 64-bit package for the correct python version from http://www.lfd.

uci.edu/~gohlke/pythonlibs/#lxml

gtk Version 2.22.1

1. Download bundle from here: http://ftp.gnome.org/pub/gnome/binaries/win64/
gtk+/2.22/gtk+-bundle_2.22.1-20101229_win64.zip

2. Unpack e.g. in c:\opt\gtk-2.22.1

3. Put c:\opt\gtk-2.22.1\bin in system path

4. In a shell, try running gtk-demo to see if installation is OK

pygobject, py2cairo, pygtk Install selecting (64-bit or 32-bit) packages from http://www.

lfd.uci.edu/~gohlke/pythonlibs/#pygtk and http://www.lfd.uci.edu/~gohlke/

pythonlibs/#pycairo

dateutil Version 2.2

Install selecting (64-bit or 32-bit) package for the correct python version from http:

//www.lfd.uci.edu/~gohlke/pythonlibs/#python-dateutil

numpy Version 1.8.1

Install selecting (64-bit or 32-bit) package for the correct python version from http:

//www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

pyparsing Version 2.0.2

Install selecting (64-bit or 32-bit) package for the correct python version from http:

//www.lfd.uci.edu/~gohlke/pythonlibs/#pyparsing

matplotlib Version 1.3.1

Install selecting (64-bit or 32-bit) package from http://www.lfd.uci.edu/~gohlke/

pythonlibs/#matplotlib

networkx Version 1.8.1 or later Install selecting (64-bit or 32-bit) package from http://www.

lfd.uci.edu/~gohlke/pythonlibs/#networkx

pygraphviz Version 1.2 or later

1. Install graphviz-2.xx.msi (version 2.32 or later) from http://www.graphviz.org/

download/

2. Install selecting (64-bit or 32-bit) package from: http://www.lfd.uci.edu/~gohlke/
pythonlibs/#pygraphviz

A.1.3 Linux 64 bit

nuXmv, ocra and xSAP ocra, nuXmv and xSAP executables are statically linked.

94

http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://ftp.gnome.org/pub/gnome/binaries/win64/gtk+/2.22/gtk+-bundle_2.22.1-20101229_win64.zip
http://ftp.gnome.org/pub/gnome/binaries/win64/gtk+/2.22/gtk+-bundle_2.22.1-20101229_win64.zip
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygtk
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygtk
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pycairo
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pycairo
http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-dateutil
http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-dateutil
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyparsing
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyparsing
http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib
http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib
http://www.lfd.uci.edu/~gohlke/pythonlibs/#networkx
http://www.lfd.uci.edu/~gohlke/pythonlibs/#networkx
http://www.graphviz.org/download/
http://www.graphviz.org/download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz

Scripts Scripts are all located in top-level directory file scripts.
To execute them, a Python 2.7.x interpreter is needed. The Python interpreter should be

already installed by default on any Linux distribution.
Should version 2.7.x be not installed, install the corresponding package (requires generally

root priviledges).

Viewers All requisites for running scripts, plus:

lxml Version 3.2.3 or later. Install the corresponding package, or use pip.

gtk Version 2.22.1 or later, but stick with version 2.x. Install the corresponding package.

pygobject, py2cairo, pygtk Install corresponding packages.

matplotlib Version 1.3.1 or later

Install corresponding package.

networkx Version 1.8.1 or later

Install corresponding package.

graphviz Version 2.32 or later

Install corresponding package.

pygraphviz Version 1.2 or later

Install corresponding package.

goocanvas and pygoocanvas Version 1.x

Install corresponding packages.

95

Appendix B

Syntax Directed Editor

Syntactic Errors and Auto-completion The model viewer is able to detect and underline
syntactic and semantic errors in the model and they can be viewed both in the related section
of the code and in the “Output Console” which maintains also a history description. Another
important feature of the model viewer is the auto-completion which aid the modeling by
suggesting a set of reasonably possible keywords/words.

96

Appendix C

Script Guide

This section provides a reference for the scripts provided by xSAP.

C.1 Model Extender

The Model Extender takes as inputs:

• A nominal SMV model

• A Fault Extension Instruction file (FEI)

The Model Extender produces as output:

• A SMV model extended with fault behaviours

• A list of fault modes as XML file

Both outputs will be used in the Safety Analysis, while the extended SMV model can be
used for model-checking. If the provided input contains errors, logging files will be produced.

The Model Extender is a combination of tools which process the input and perform the
actual extension. The following script is available for this task.
python . . / . . / s c r i p t s / extend model . py −h
usage : extend model . py [−h] [−−xml−f e i] [−−verbose] [−−d i sab l e−checks]

[−p PATH] [−d PATH] [−−d i sab l e−cc] [−−anonymize]
SMV−FILE FEI−FILE

Produces an extend smv f i l e out o f g iven nominal smv f i l e and f e i

p o s i t i o n a l arguments :
SMV−FILE The input nominal smv f i l e name
FEI−FILE The input f e i f i l e name

opt i ona l arguments :
−h , −−help show th i s help message and ex i t
−−xml−f e i , −x Process XML−format f o r input f e i f i l e
−−verbose , −v Sets ve rbo s i t y to high l e v e l
−−d i sab l e−checks , −c Disab le semant ics checks when extending model (f o r

debugging)
−p PATH, −−path PATH Path to the extens ion l i b r a r y (d e f au l t : / hardmnt/mason0

/ sra /bozzano/SMV/ESTools/xSAP/data/ fm l i b r a ry)
−d PATH, −−outd i r PATH

Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

−−d i sab l e−cc , −C Disab le genera t i on o f common cause encoding when
extending model (f o r debugging)

−−anonymize , −A Anonymize the generated extended model

All options are not mandatory, it can be run simply with:

$> python s c r i p t s / extend model . py <nominal−model . smv> < f e i . txt>

Additionally, option -v enables verbose messages to the user.

97

C.2 Fault Tree Analysis

Fault Tree analysis requires:

• A SMV model extended with fault behaviours

• A list of fault modes as XML file

It produces as output:

• A file containing the events of the generated fault tree

• A file containing the gates of the generated fault tree

If errors are encountered, logging files will be provided. The following script is available to
call the FTA procedures.

python . . / . . / s c r i p t s / compute ft . py −h
usage : compute ft . py [−h] [−−smv− f i l e SMV−FILE] [−−fms− f i l e FMS−FILE]

[−− f au l t s−bound BOUND] [−−prop−index INDEX]
[−−prop−name NAME] [−−prop−t ext PROPERTY] [−−verbose]
[−−engine {bdd , bmc , bddbmc , msat , ic3 , bmc ic3 }] [−−dynamic]
[−−gen−t r a c e] [−−bmc−l ength BMCLENGTH] [−−show]
[−−p r obab i l i t y] [−−symbol ic] [−−quick] [−− i n t e rmed ia te]
[−d PATH]
[−−boolean−convers ion−uses−pred icate−normal i za t ion]

Produces an extend smv f i l e out o f g iven nominal smv f i l e and f e i

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−smv− f i l e SMV−FILE The input extended smv f i l e name
−−fms− f i l e FMS−FILE The input f a u l t mode xml f i l e name
−−f au l t s−bound BOUND, −N BOUND

Sets a bound to the maximum number o f f a u l t s
−−prop−index INDEX, −n INDEX

Property index to be used as TLE
−−prop−name NAME, −P NAME

Property name to be used as TLE
−−prop−t ext PROPERTY, −p PROPERTY

Textual property to be used as TLE
−−verbose , −v Sets ve rbo s i t y to high l e v e l
−−engine {bdd , bmc , bddbmc , msat , ic3 , bmc ic3 } , −E {bdd , bmc , bddbmc , msat , ic3 , bmc ic3}

Use given engine (d e f au l t : bdd)
−−dynamic Generates dynamic f a u l t t r e e
−−gen−trace , −e Generates xml t ra c e from f a u l t t r e e
−−bmc−l ength BMC LENGTH, −k BMCLENGTH

Spec i f y BMC length (i n t e g e r)
−−show , −s Show the generated f a u l t t r e e
−−p r obab i l i t y Computes p r obab i l i t y when generat ing FT
−−symbolic , −S Generates symbol ic p r obab i l i t y as we l l when computing

p r obab i l i t y
−−quick , −Q For quick computation , avoid orde r ing the FT and when

computing p r obab i l i t y avoid comput ingprobabi l i ty o f
in te rmed ia te nodes . Use tospeedup computation .

−−intermediate , −I Generates in te rmed ia te FTs for each l ay e r
−d PATH, −−outd i r PATH

Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

−−boolean−convers ion−uses−pred icate−normal izat ion , −b
Enables p r ed i c a t e normal i za t ion during boolean
conver s ion

No option is required; if no smv model and fault modes files are provided, the script
automatically looks for them in the ./out directory. Files are selected only if there is no
possible ambiguity, and choices are always reported by verbose messages. Additionally, option
-v enables verbose messages to the user.

C.3 FMEA Table Analysis

FMEA Table analysis requires:

98

• A SMV model extended with fault behaviours

• A list of fault modes as XML file

It produces a textual file and an xml file containing the generated FMEA table. If errors
are encountered, logging files will be provided. FMEA can be performed using the following
script.

python . . / . . / s c r i p t s / compute fmea table . py −h
usage : compute fmea table . py [−h] [−−smv− f i l e SMV−FILE] [−−fms− f i l e FMS−FILE]

[−−prop−i n d i c e s INDICES][−−prop−names PROP−NAMES]
[−−props−t ext PROPERTIES] [−−verbose]
[−−engine {bdd , bmc , msat }] [−−dynamic] [−−compact]
[−−gen−t r a c e] [−−card CARD]
[−−bmc−l ength BMCLENGTH] [−−show] [−d PATH]

Produces an extend smv f i l e out o f g iven nominal smv f i l e and f e i

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−smv− f i l e SMV−FILE The input extended smv f i l e name
−−fms− f i l e FMS−FILE The input f a u l t mode xml f i l e name
−−prop−i n d i c e s INDICES , −n INDICES

Property i n d i c e s to be used as TLE (separated by ' : ' ,
' , ' , or spaces , ranges l i k e '0−10 ' are al lowed)

−−prop−names PROP−NAMES, −P PROP−NAMES
Property names to be used as TLE (separated by ' : ' , or
' , ')

−−props−t ext PROPERTY, −p PROPERTY
Textual property to be used as TLE(separated by ' : ' or
' , ')

−−verbose , −v Sets ve rbo s i t y to high l e v e l
−−engine {bdd , bmc , msat} , −E {bdd , bmc , msat}

Use given engine (d e f au l t : bdd)
−−dynamic Generates dynamic fmea tab l e
−−compact , −c Generates compact fmea tab l e
−−gen−trace , −e Generates xml t ra c e from fmea tab l e
−−card CARD, −N CARD Cut−Set c a r d i n a l i t y (d e f au l t : 1)
−−bmc−l ength BMC LENGTH, −k BMCLENGTH

Spec i f y BMC length (i n t e g e r)
−−show , −s Show the generated fmea tab l e
−d PATH, −−outd i r PATH

Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

No option is required; if no SMV model and fault modes files are provided, the script
automatically looks for them in the ./out directory. Files are selected only if there is no
possible ambiguity, and choices are always reported by verbose messages. Additionally, option
-v enables verbose messages to the user.

C.4 MTCS Analysis

MTCS analysis requires:

• A SMV model extended with fault behaviours

• A list of events as XML file

• A list of expressions as command arguments

It produces as output:

• A file containing MTCS in XML format

• Optionally, a file containing MTCS in dot or tex format

99

usage : compute mtcs . py [−h] [−−smv− f i l e SMV−FILE] [−−fms− f i l e FMS−FILE]
[−−verbose] [−−use−vars] [−−paging]
[−−v i sua l−out FORMAT] [−− l a y e r i n g] [−− s i ng l e−source]
−−exp r e s s i on s . . . [−d PATH]
[−−boolean−convers ion−uses−pred icate−normal i za t ion]

Computes MTCS for given modes , smv f i l e and fms f i l e

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−smv− f i l e SMV−FILE The input extended smv f i l e name
−−fms− f i l e FMS−FILE The input f a u l t mode xml f i l e name
−−verbose , −v Sets ve rbo s i t y to high l e v e l
−−use−vars , −V Treats exp r e s s i on s as s t a t e mode va r i a b l e s
−−paging , −g In v i s u a l output , p r in t each t r a n s i t i o n s s epa ra t e l y
−−v i sua l−out FORMAT, −o FORMAT

Visua l output format , e i t h e r tex or dot
−−l aye r ing , −L Turn o f f l a y e r i n g
−−s i ng l e−source , −e Compute t r a n s i t i o n s only from the f i r s t mode
−−exp r e s s i on s . . . L i s t o f e xp r e s s i on s d e f i n i n g mode va r i a b l e s or modes
−d PATH, −−outd i r PATH

Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

−−boolean−convers ion−uses−pred icate−normal izat ion , −b
Enables p r ed i c a t e normal i za t ion during boolean
conver s ion

The only required option is the list of expressions. If no smv model and fault modes files
are provided, the script automatically looks for them in the ./out directory. Files are selected
only if there is no possible ambiguity, and choices are always reported by verbose messages.
Additionally, option -v enables verbose messages to the user.

C.5 Diagnosability

C.5.1 Diagnosability Analysis

Diagnosability analysis requires:

• An SMV model (extended with fault behaviours)

• A condition that needs to be diagnosed

The analysis answers positively if the condition is diagnosable, and provides a counterex-
ample otherwise. If errors are encountered, logging files will be provided. Diagnosability
analysis can be performed using the following script.

python s c r i p t s / ch e ck d i a gno s ab i l i t y . py −h
usage : c h e ck d i a gno s ab i l i t y . py [−h] [−−engine {bdd , bmc , msat bmc , i c 3 }]

[−−bmc−l ength BMC LEN] [−−smv− f i l e SMV]
[−−d iagnos i s−cond i t i on DIAG COND]
[−−alarm−pattern { exact , bounded , f i n i t e }]
[−−delay−bound DELAYBOUND]
[−−context−expr e s s i on LTL CONTEXT]
[−−observab les− f i l e OBS FILE]
[−−as l− f i l e ASL FILE]
[−−verbos i ty−l e v e l VERBOSE LEVEL]

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−engine {bdd , bmc , msat bmc , i c 3 } , −E {bdd , bmc , msat bmc , i c 3 }

Use given engine (d e f au l t : i c 3)
−−bmc−l ength BMC LEN, −k BMC LEN

Maximum path length for BMC
−−smv− f i l e SMV, −m SMV

SMV f i l e
−−d iagnos i s−cond i t i on DIAG COND, −c DIAG COND

Diagnos i s cond i t i on
−−alarm−pattern { exact , bounded , f i n i t e } , −a { exact , bounded , f i n i t e }

Alarm pattern (d e f au l t : None)
−−delay−bound DELAY BOUND, −d DELAYBOUND

Alarm pattern delay bound
−−context−expr e s s i on LTL CONTEXT, −x LTL CONTEXT

LTL context expr e s s i on
−−observab les− f i l e OBS FILE , −o OBS FILE

F i l e s p e c i f y i n g observab le v a r i a b l e s
−−as l− f i l e ASL FILE , −f ASL FILE

100

F i l e conta in ing the alarms s p e c i f i c a t i o n
−−verbos i ty−l e v e l VERBOSE LEVEL, −v VERBOSE LEVEL

Sets the output ve rbo s i t y l e v e l

C.5.2 Generation of Minimum Observables Set

Generation of minimum observables requires the same inputs as diagnosability analysis:

• An SMV model (extended with fault behaviours)

• A condition that needs to be diagnosed

The minimal sets of observables under which the condition is diagnosable will be returned.
If errors are encountered, logging files will be provided. The analysis can be performed using
the following script.

python . . / . . / . . / s c r i p t s /min imize obse rvab le s . py −h
usage : min imize obse rvab le s . py [−h] [−−engine {bmc , bmc ic3 }]

[−−bmc−l ength BMC LEN] [−−smv− f i l e SMV]
[−−d iagnos i s−cond i t i on DIAG COND]
[−−alarm−pattern { exact , bounded , f i n i t e }]
[−−delay−bound DELAYBOUND]
[−−context−expr e s s i on LTL CONTEXT]
[−−observab les− f i l e OBS FILE]
[−−as l− f i l e ASL FILE]
[−−verbos i ty−l e v e l VERBOSE LEVEL]
[−−no−stdout−pr in t]

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−engine {bmc , bmc ic3 } , −E {bmc , bmc ic3}

Use given engine (d e f au l t : bmc)
−−bmc−l ength BMC LEN, −k BMC LEN

Maximum path length for BMC
−−smv− f i l e SMV, −m SMV

SMV f i l e
−−d iagnos i s−cond i t i on DIAG COND, −c DIAG COND

Diagnos i s cond i t i on
−−alarm−pattern { exact , bounded , f i n i t e } , −a { exact , bounded , f i n i t e }

Alarm pattern (d e f au l t : None)
−−delay−bound DELAY BOUND, −d DELAYBOUND

Alarm pattern delay bound
−−context−expr e s s i on LTL CONTEXT, −x LTL CONTEXT

LTL context expr e s s i on
−−observab les− f i l e OBS FILE , −o OBS FILE

F i l e s p e c i f y i n g observab le v a r i a b l e s
−−as l− f i l e ASL FILE , −f ASL FILE

F i l e conta in ing the alarms s p e c i f i c a t i o n
−−verbos i ty−l e v e l VERBOSE LEVEL, −v VERBOSE LEVEL

Sets the output ve rbo s i t y l e v e l
−−no−stdout−pr in t Result i s not pr inted to stdout .

C.6 FD Synthesis

FD synthesis requires:

• An SMV model (extended with fault behaviours)

• A set of observables variables

• An ASL specification

This provides in output an FD for the system that satisfies the ASL specification. If errors
are encountered, logging files will be provided. FD Synthesis can be performed using the
following script.

101

usage : s yn t h e s i z e f d . py [−h] [−−smv− f i l e SMV] [−−observab les− f i l e OBS FILE]
[−−as l− f i l e ASL FILE] [−−stand−a lone]
[−−out− f i l e TARGET SMV]
[−−verbos i ty−l e v e l VERBOSE LEVEL]
[−−composit ion−semant ics COMPOSITION SEMANTICS]
[−−no−dag]

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−smv− f i l e SMV, −m SMV

SMV f i l e
−−observab les− f i l e OBS FILE , −o OBS FILE

F i l e s p e c i f y i n g observab le v a r i a b l e s
−−as l− f i l e ASL FILE , −f ASL FILE

F i l e s p e c i f y i n g the alarm s p e c i f i c a t i o n
−−stand−a lone Output only the FD (By de f au l t outputs the combination

o f FD and plant)
−−out− f i l e TARGET SMV

Where to wr i t e the synthe s i z ed model
−−verbos i ty−l e v e l VERBOSE LEVEL, −v VERBOSE LEVEL

Sets the output ve rbo s i t y l e v e l
−−composit ion−semant ics COMPOSITION SEMANTICS

Spec i f y composit ion semant ics : (s) ynchronous or
(a) synchronous

−−no−dag Do not use the DAG pr in t i ng o f the t r a n s i t i o n
r e l a t i o n (This should be used only on smal l FD)

C.7 TFPG

C.7.1 Format Conversion

xSAP supports two formats for TFPGs: xml and textual. It is possible to switch between
the two formats using the following script.

python . . / . . / s c r i p t s / conve r t t fpg f o rmat . py
usage : conve r t t fpg f o rmat . py [−h] [−−t fpg− f i l e TFPG]

[−−a s s o c i a t i on s− f i l e ASSOC]

Converts a TFPG (a s s o c i a t i o n s) XML f i l e in to t ex tua l format or v i c ev e r s a

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−t fpg− f i l e TFPG, −t TFPG

The TFPG f i l e (can be in XML or human readab le format)
−−a s s o c i a t i on s− f i l e ASSOC, −a ASSOC

TFPG SMV a s s o c i a t i o n s f i l e

It is possible to convert both a TFPG or an associations file; the specific option is required.

C.7.2 TFPG Generation

TFPGs in xml format can be generated automatically. No options are required; if no filename
is specified, a TFPG named out.txml is created.

python . . / . . / s c r i p t s / g ene r a t e t f pg . py −h
usage : g en e r a t e t f pg . py [−h] [−−output f i l ename] [−−min lb n] [−−max lb n]

[−−max ub n] [−− i n f i n i t e u b p r o b a b i l i t y n]
[−−mon i to r ed probab i l i t y n]
[−−and ov e r o r p r obab i l i t y n] [−−modes n]
[−−d i s c r e p an c i e s n] [−−edges n] [−− f a i l u r e mode s n]
[−−graph type]

Random TFPG generator

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−output f i l ename , −o f i l ename

The f i l e to wr i t e the TFPG to
−−min lb n The minimum lower bound in the TFPG
−−max lb n The maximum lower bound in the TFPG
−−max ub n The maximum upper bound in the TFPG
−− i n f i n i t e u b p r o b a b i l i t y n

The p r obab i l i t y the maximum upper ” ”bound in the TFPG
i s i n f i n i t e for each edge

−−mon i to r ed probab i l i t y n
The p r obab i l i t y a d i sc repancy i s ” ” observab le in the
TFPG

−−and ov e r o r p r obab i l i t y n
The p r obab i l i t y a d i sc repancy i s ” ”an AND node (1 −

102

p r obab i l i t y i t i s an OR node) in ” ” the TFPG
−−modes n The number o f modes in the TFPG
−−d i s c r e p an c i e s n The number o f d i s c r e p an c i e s in the ” ”TFPG
−−edges n The number o f edges in the TFPG
−−f a i l u r e mode s n The number o f f a i l u r e modes in the TFPG
−−graph type , −g type

The algor i thm to be used for randomly generate a graph

C.7.3 TFPG Synthesis

TFPG synthesis is carried out specifying a SMV model extended with fault behaviours and
an associations file. The synthesized TFPG is created in the chosen output directory. If no
name is specified, the suffix synth tfpg.txml is added to the name of the SMV model. If
errors are encountered, logging files will be provided. The following script can be used for this
task.

python . . / . . / s c r i p t s / s yn t h e s i z e t f p g . py −h
usage : s yn t h e s i z e t f p g . py [−h] [−−a s s o c i a t i on s− f i l e ASSOC] [−−smv− f i l e SMV]

[−−output−t fpg OUT TFPG FNAME]
[−−engine {bmc , bdd , msat bmc , sbmc , ic3 , bmc bdd , sbmc bdd }]
[−− f o r ce−boolean−i c 3] [−−bmc−l ength BMC LEN]
[−−dynamic]
[−−boolean−convers ion−uses−pred icate−normal i za t ion]
[−−d i sab l e−coi−r educt ion]
[−−prune−unreachable−nodes]
[−−verbos i ty−l e v e l VERBOSE LEVEL] [−−outd i r PATH]

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−a s s o c i a t i on s− f i l e ASSOC, −a ASSOC

TFPG SMV a s s o c i a t i o n s f i l e
−−smv− f i l e SMV, −m SMV

SMV Model
−−output−t fpg OUT TFPG FNAME, −o OUT TFPG FNAME

Name o f the synthe s i z ed TFPG
−−engine {bmc , bdd , msat bmc , sbmc , ic3 , bmc bdd , sbmc bdd } , −E {bmc , bdd , msat bmc , sbmc , ic3 , bmc bdd , sbmc bdd}

Use given engine (d e f au l t : bmc)
−−f o r ce−boolean−i c3 , −B

Force use o f Boolean ve r s i on o f IC3 engine
−−bmc−l ength BMC LEN, −k BMC LEN

Maximum path length for BMC
−−dynamic , −D Enables dynamic r eo rde r i ng o f v a r i a b l e s
−−boolean−convers ion−uses−pred icate−normal izat ion , −b

Enables p r ed i c a t e normal i za t ion during boolean
conver s ion

−−d i sab l e−coi−reduct ion , −c
Di sab l e s TFPG graph s imp l i f i c a t i o n based on cone−of−i n f l u e n c e

−−prune−unreachable−nodes
Enables a p r ep roc e s s i ng step that removes unreachable
nodes be f o r e s yn th e s i s i s s t a r t ed .

−−verbos i ty−l e v e l VERBOSE LEVEL, −v VERBOSE LEVEL
Sets the output ve rbo s i t y l e v e l

−−outd i r PATH, −O PATH
Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

If the required options are not specified, error messages are shown to the user. Option -v
can be set to enable verbose messages to the user.

C.7.4 TFPG Behavioral Validation

TFPG behavioral validation is carried out specifying a SMV model extended with fault be-
haviours, an associations file and a TFPG. The result is printed on standard output and a file
containing the proof obligations is generated. If errors are encountered, logging files will be
provided. The following script can be used for the task.

python . . / . . / s c r i p t s / v a l i d a t e t f p g b ehav i o r . py −h
usage : v a l i d a t e t f p g b ehav i o r . py [−h] [−−t fpg− f i l e TFPG]

[−−a s s o c i a t i on s− f i l e ASSOC] [−−smv− f i l e SMV]
[−−boolean−convers ion−uses−pred icate−normal i za t ion]
[−−dynamic−r e o rde r i ng]
[−−delta−t−var DELTA T VAR]
[−−bmc−l ength BMC LEN]
[−−engine {msat bmc , i c 3 }]
[−−property−to−va l i d a t e { completeness , e dg e t i gh tn e s s }]
[−−monol i th ic−check] [−−generate−only]

103

[−−parametric−dump] [−−outd i r PATH]

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−t fpg− f i l e TFPG, −t TFPG

The TFPG f i l e (can be in XML or human readab le format)
−−a s s o c i a t i on s− f i l e ASSOC, −a ASSOC

TFPG SMV a s s o c i a t i o n s f i l e
−−smv− f i l e SMV, −m SMV

SMV Model
−−boolean−convers ion−uses−pred icate−normal izat ion , −b

Enables p r ed i c a t e normal i za t ion during boolean
conver s ion

−−dynamic−r eorder ing , −D
Enables dynamic r eo rde r i ng o f BDD va r i a b l e s

−−delta−t−var DELTA T VAR, −d DELTA T VAR
de l t a t va r i ab l e name

−−bmc−l ength BMC LEN, −k BMC LEN
Maximum path length for BMC

−−engine {msat bmc , i c 3 } , −E {msat bmc , i c 3 }
Use given engine (d e f au l t : msat bmc)

−−property−to−va l i d a t e { completeness , e dg e t i gh tn e s s } , −p { completeness , e dg e t i gh tn e s s }
Val idate given property (d e f au l t : completeness)

−−monol i th ic−check , −M
Check completeness proo f o b l i g a t i o n s us ing a s i n g l e
mono l i th i c check

−−generate−only , −g Only generate f i l e s for model checking
−−parametric−dump, −P

Dump parameter ized completeness property
−−outd i r PATH, −O PATH

Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

If the required options are not specified, error messages are shown to the user.

C.7.5 TFPG Tightening

TFPG tightening is carried out specifying a SMV model extended with fault behaviours, an
associations file and a TFPG. The result is printed on standard output and a file containing
the tightened TFPG is generated. If errors are encountered, logging files will be provided.
The following script can be used for the task.
python . . / . . / s c r i p t s / t i g h t e n t f p g . py −h
usage : t i g h t e n t f p g . py [−h] [−−t fpg− f i l e TFPG] [−−a s s o c i a t i on s− f i l e ASSOC]

[−−smv− f i l e SMV] [−−tags TAGS]
[−−delta−t−var DELTA T VAR]
[−−engine {conc , i a }] [−−tmax−bound TMAXBOUND]
[−−bmc−l ength BMC LEN] [−− i c3−l ength IC3 LEN]
[−−outd i r PATH]

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−t fpg− f i l e TFPG, −t TFPG

The TFPG f i l e (can be in XML or human readab le format)
−−a s s o c i a t i on s− f i l e ASSOC, −a ASSOC

TFPG SMV a s s o c i a t i o n s f i l e
−−smv− f i l e SMV, −m SMV

SMV Model
−−tags TAGS, −T TAGS Parameters to be t ightened (tmin/tmax/modes ; semi−

co lon separated)
−−delta−t−var DELTA T VAR, −d DELTA T VAR

de l t a t va r i ab l e name
−−engine {conc , i a } , −E {conc , i a }

IC3 mode (d e f au l t : conc)
−−tmax−bound TMAXBOUND

Upper bound for tmax (for t i gh t en ing o f
tmax=i n f i n i t y) .

−−bmc−l ength BMC LEN, −k BMC LEN
Maximum path length for BMC

−−i c3−l ength IC3 LEN , −K IC3 LEN
Maximum number o f frames for IC3

−−outd i r PATH, −O PATH
Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

If the required options are not specified, error messages are shown to the user.

C.7.6 TFPG Effectiveness Validation

TFPG effectiveness validation is carried out specifying a SMV model extended with fault
behaviours and a target failure modes set. If errors are encountered, logging files will be

104

provided. The following script is available for this task.

python . . / . . / s c r i p t s / v a l i d a t e t f p g e f f e c t i v e n e s s . py −h
usage : v a l i d a t e t f p g e f f e c t i v e n e s s . py [−h] [−−t fpg− f i l e TFPG]

[−−target−fm−set FM SET]
[−−sampling−ra t e SAMPLING RATE]
[−−target−system−mode TARGET SYSTEM MODE]
[−−use−bmc] [−−bmc−l ength BMCLENGTH]
[−−outd i r PATH]

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−t fpg− f i l e TFPG, −t TFPG

The TFPG f i l e (can be in XML or human readab le format)
−−target−fm−set FM SET

The set o f FMs that need to be diagnosed (as a group
colon−separated

−−sampling−ra t e SAMPLING RATE
The i n t e r v a l at which the monitored system i s
monitored

−−target−system−mode TARGET SYSTEM MODE
The system mode for which e f f e c t i v e n e s s should be
analyzed

−−use−bmc Use bounded model checking
−−bmc−l ength BMCLENGTH

Maximum path length for BMC
−−outd i r PATH, −O PATH

Output d i r e c to ry , where a l l generated f i l e should be
put in to (d e f au l t : out)

If the required options are not specified, error messages are shown to the user.

C.7.7 TFPG Statistics Information Extraction

Statistic information of a TFPG can be extracted specifying a valid TFPG file. The following
script is available for this task.

python . . / . . / s c r i p t s / s t a t s t f p g . py −h
usage : s t a t s t f p g . py [−h] [−−syntax−only] inputTFPG

S t a t i s t i c s in fo rmat ion on TFPG

po s i t i o n a l arguments :
inputTFPG The TFPG model to use

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−syntax−only , −s Perform only s y n t a c t i c a l a n a l y s i s

If the required options are not specified, error messages are shown to the user.

C.7.8 TFPG Properties Check

Check for possibility, necessity, consistency and activability of a scenario is carried out speci-
fying the desired scenario and a TFPG. The following script is available for this task.

python . . / . . / s c r i p t s / check t fpg . py −h
usage : check t fpg . py [−h] [−− s c ena r i o s c ena r i o] [−− p o s s i b i l i t y] [−−ne c e s s i t y]

[−−con s i s t ency] [−− a c t i v a b i l i t y] [−−a l l−modes]
[−−open−i n f i n i t y]
inputTFPG

TFPG Check (SMT) : Checks mul t ip l e p r op e r t i e s o f the given TFPG.

p o s i t i o n a l arguments :
inputTFPG The TFPG model to use

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−s c ena r i o s c ena r i o The s c ena r i o to be used for checking
−−p o s s i b i l i t y , −p Checks the p o s s i b i l i t y o f the given s c ena r i o in the given TFPG
−−nece s s i t y , −n Checks the n e c e s s i t y o f the given s c ena r i o in the given TFPG
−−cons i s t ency , −x Checks i f a s c ena r i o e x i s t s for the given TFPG
−−a c t i v a b i l i t y Checks i f a l l nodes can be ac t i va t ed
−−a l l−modes Enumerates the modes compatible with the s c ena r i o .
−−open−i n f i n i t y Force the usage o f Open I n f i n i t y semant ics

If the required options are not specified, error messages are shown to the user.

105

C.7.9 TFPG Scenario Diagnosis

Diagnosis of a TFPG (and of a scenario) is carried out by specifying the TFPG (and the
desired scenario). The following script is available for this task.

python . . / . . / s c r i p t s / compute t fpg d iagnos i s . py −h
usage : compute t fpg d iagnos i s . py [−h] [−−d i a gno s ab i l i t y] [−−diagnose s c ena r i o]

[−−a l l−diag node] [−−open−i n f i n i t y]
inputTFPG

TFPG Diagnos i s (SMT) : Diagnose the s c ena r i o for the given TFPG.

p o s i t i o n a l arguments :
inputTFPG The TFPG model to use

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−d i a gno s ab i l i t y Checks i f a l l f a i l u r e modes are d iagnosab le
−−diagnose scenar io , −d s c ena r i o

Enumerate the p o s s i b l e d iagnoses for the given s c ena r i o
−−a l l−diag node , −a node

Checks i f the given node appears in a l l the d iagnoses
−−open−i n f i n i t y Force the usage o f Open I n f i n i t y semant ics

If the required options are not specified, error messages are shown to the user.

C.7.10 TFPG Refinement Check

TFPG refinement check is carried out by specifiying the original TFPG, the refined one and
a mapping file. The following script is available for this task.

python . . / . . / s c r i p t s / che ck t fpg r e f i n ement . py −h
usage : che ck t fpg r e f i n ement . py [−h] [−−mapping mapping] [−− r e f i n e o r i g i n a l]

[−−open−i n f i n i t y]
inputTFPG

TFPG Refinement (SMT) : Checks i f a inputTFPG i s a re f inement o f the o r i g i n a l TFPG.

p o s i t i o n a l arguments :
inputTFPG The TFPG model to use (TFPG 1)

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−mapping mapping , −m mapping

The re f inement mapping
−−r e f i n e o r i g i n a l , −r o r i g i n a l

TFPG 2
−−open−i n f i n i t y Force the usage o f Open I n f i n i t y semant ics

If the required options are not specified, error messages are shown to the user.

C.7.11 TFPG Filtering

TFPG filtering is carried out on a given TFPG file, using the following script:

python . . / . . / s c r i p t s / f i l t e r t f p g . py −h
usage : f i l t e r t f p g . py [−h] [−−t fpg− f i l e TFPG]

[−− f i l t e r −ac t i on { s imp l i f y , f o cus }]
[−− focus−nodes FOCUS NODES] [−−outd i r PATH]

opt i ona l arguments :
−h , −−help show th i s help message and exit
−−t fpg− f i l e TFPG, −t TFPG

The TFPG f i l e (can be in XML or human readab le format)
−− f i l t e r −ac t i on { s imp l i f y , f o cus } , −F { s imp l i f y , f o cus }

' s imp l i f y ' : Bas ic s imp l i f i c a t i o n r ou t i n e s as executed in TFPG syn th e s i s
are performed . Edges are assumed to be maximally pe rmi s s ive (tmin=0,
tmax=in f , modes=a l l) , o therwi se soundness i s not guaranteed . Note that
a l l nodes in the input TFPG are preserved in the output TFPG. ' focus ' :
A l l nodes and r e s p e c t i v e incoming edges from which the nodes s p e c i f i e d
with '−− focus−nodes ' cannot be reached are dropped from the TFPG.

−−focus−nodes FOCUS NODES
When s e l e c t i n g f i l t e r ac t i on ' focus ' , t h i s opt ion i s used to i nd i c a t e
the focus nodes to cons ide r . Spec i f y as colon−separated l i s t o f node names .

−−outd i r PATH, −O PATH
Output d i r e c to ry , where a l l generated f i l e should be put in to (d e f au l t : out)

106

C.8 Viewers

C.8.1 Trace viewer

The trace viewer can be used to display a trace generated by nuXmv or xSAP. It takes a
trace file (XML format) and shows it. It allows also to specify filters which can be used to
limit the symbols spaces and/or the steps which are show.

To run the Trace viewer, invoke script:

$> python . . / . . / s c r i p t s / v i ew t ra c e . py <t race− f i l e . xml>

C.8.2 Fault Tree viewer

The fault tree viewer can be used to display a fault tree generated by xSAP. It takes a FT
in FT-Plus format (two files for events and gates) or in XML format and shows it.

To run the Fault Tree viewer, invoke script:
$> python s c r i p t s / v i ew f t . py −h

usage : v i ew f t . py [−h] [−−events− f i l e EVENTS−FILE] [−−gates− f i l e GATES−FILE]
[−−xml− f i l e XML−FILE] [−d PATH] [−o OUTPUT−FILE]
[− f OUTPUT−FORMAT] [−−verbose]

Opens the Fault Tree Viewerwith s p e c i f i e d or found f i l e s

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−events− f i l e EVENTS−FILE , −e EVENTS−FILE

The input events f i l e name
−−gates− f i l e GATES−FILE , −g GATES−FILE

The input gate s f i l e name
−−xml− f i l e XML−FILE , −x XML−FILE

The input f a u l t t r e e xml f i l e name
−d PATH, −−outd i r PATH

Input d i r e c to ry , where gate s and events f i l e s are
searched when not s p e c i f i e d (d e f au l t : out)

−o OUTPUT−FILE , −−output− f i l e OUTPUT−FILE
Output f i l e where f a u l t t r e e i s dumped

−f OUTPUT−FORMAT, −−output−format OUTPUT−FORMAT
Output format for the f a u l t t r e e (d e f au l t : png)

−−verbose , −v Sets ve rbo s i t y to high l e v e l

Given a pair of events and gates files, (e.g. event.txt and gates.txt) it can show the fault
tree with:

$> python s c r i p t s / v i e w f t . py −e events . txt −g gate s . txt

The same can be obtained giving an xml representation of it (e.g. ft.xml):

$> python s c r i p t s / v i e w f t . py −x f t . xml

However, it can be handy to exploit option -d (or its default to ./out) to automatically
find fault tree generated by scripts/compute ft.py. In this case, events and gates files are
automatically selected only if there is no possible ambiguity, and choices are always reported
by the verbose messages.
$> pwd
. . . / examples / f e / t r i p l e modu l a r g en e r a t o r /

$> l s
out SC TMG. smv SC TMG. f e i

$> python . . / . . / . . / s c r i p t s / v i ew f t . py −v

INFO: Searching for s u i t a b l e gates f i l e
INFO: Found gates f i l e ' out/extended SC TMGgates . txt '
INFO: Searching for s u i t a b l e events f i l e
INFO: Found events f i l e ' out/extended SC TMGevents . txt '

This works only if scripts/compute ft.py was called before invoking the ft viewer.

107

C.8.3 FMEA Table viewer

There is no viewer for FMEA at the moment. However, since FMEA is generated by xSAP
as CSV file, text editors or spreadsheet programs like excel can be used to show it.

C.8.4 TFPG viewer

The TFPG viewer can be used to display a TFPG. It takes a TFPG in xml or textual format
and shows it. The shown TFPG can also be moved, zoomed, edited and saved.

To run the TFPG viewer, invoke script:

$> python s c r i p t s / v i ew t fpg . py −h

usage : v i ew t fpg . py [−h] [−−t fpg− f i l e TFPG FNAME] [−−out− f i l e OUTFNAME]
[−−output−format {pdf , png , dot }]

Opens the TFPG Viewer

op t i ona l arguments :
−h , −−help show th i s help message and exit
−−t fpg− f i l e TFPG FNAME, −t TFPG FNAME

The input TFPG f i l e name
−−out− f i l e OUT FNAME, −o OUTFNAME

The name o f the output f i l e used to dump the TFPG
−−output−format {pdf , png , dot } , −f {pdf , png , dot}

Output format (d e f au l t : pdf)

It is possible to run the viewer in three ways:

1. with a TFPG file as argument; in this case, the selected TFPG is shown.

2. with a TFPG file and and output file as arguments; in this case, the corresponding
TFPG is directly dumped to file

3. without parameters; in this case, an empty window is shown and it is possible to load
the TFPG using the GUI.

108

Appendix D

Command Guide

This section provides a reference for the commands provided by xSAP.
We remark that xSAP also includes the commands of the nuXmv model checker. Please

refer to the nuXmv documentation, available from the nuXmv home page (http://nuxmv.fbk.eu/)

109

http://nuxmv.fbk.eu/

D.1 Invoking xSAP

xSAP can be invoked from the command line in the following way:

$> <path_to_xsap>/xsap -int -sa_compass -sa_compass_task out/fms_SC_TMG.xml

out/extended_SC_TMG.smv

where

• out/fms_SC_TMG.xml is the fault modes xml file;

• out/extended_SC_TMG.smv is the extended smv model.

The command-line options can be changed using environmental variables. This also makes it
possible to change the name of the fault modes xml file within an xSAP session. For instance,
the following is an example xSAP session.

$> <path_to_xsap>/xsap -int

xSAP > set input_file out/extended_SC_TMG.smv

xSAP > set sa_compass

xSAP > set sa_compass_task_file out/fms_SC_TMG.xml

110

D.2 Properties vs TLEs

Several commands accept as input properties and/or TLEs.
Properties describe a good behaviour of the system (”the airplane can always fly”), while a
TLE represents a bad state, the TLE leading to a failure.

Properties are taken from the properties database and are read from the input SMV file or
added at runtime with command add property. When stored in the database, properties can
be referred through their numeric ID (index) or optionally through their string name when
available. When specifying a property in the database, both invariant and LTL specifications
are allowed. Invariants accept the next operator, LTL specifications must be restricted to the
fragment of LTL which can be translated to invariant with next. E.g. G p, (G p) -> (G q)

are valid LTL properties for Safety Assessment. An example of an invalid LTL specification
is G (p -> F q) which cannot be converted to an invariant.

Differently from properties, TLEs can be specified only as invariants specifications accept-
ing the next operator.

The Safety Assessment commands transparently convert all legal LTL properties to an
invariants, while negating them to obtain the corresponding TLEs, and base their analysis on
the obtained TLEs.

111

D.3 Automated Fault extension

The fe extend module command performs automatic fault extension of the nominal model
according to the previously loaded specification.

By using the information previously loaded with command fe load doc, the command
performs the automatic fault extension of the currently loaded model and dumps the extended
model to a new SMV file. Optionally, it creates also an XML file containing information
about Fault Modes and Common Causes, with the possible associated information about fault
probability.

Notice that at the moment the currently loaded FSM remains untouched, meaning that if
you need to work on the extended model, you will have to reset and load it explicitly with
read model.

usage: fe_extend_module [-h] [-m fname] [-A] [-c] -o fname

-h Prints the command usage.

-m fname Dumps the fault mode predicates to the given file.

-o fname Dumps the extended HRC to the given file.

-A Anonymize the output.

-c Disable generation of Common Causes

The fe load doc command loads the fault extension specification XML file. Reads the
given extension-file.xml containing the specification of the fault extension, and fills internal
structures to prepare the extension. It performs syntactic and semantic checks, and report
checking errors and warnings. The path to the directory containing file fe.dtd can be specified
with option -p or with the environment variable XSAP LIBRARY PATH.

usage: fe_load_doc [-h] [-c] [-o fname] [-F xml|text] [-p path] -i fname

-h Prints this command usage

-i fname Loads the given XML extension file

-c Disables syntactic and semantic checks

-o fname Dumps errors and warnings to the specified output file

-F text|xml Format to be used when dumping errors and warnings [text]

-p path Sets the path where file ’fe.dtd’ is located

112

D.4 Printing the Fault Variables

The show fault variables command lists the specified fault variables.

usage: show_fault_variables [-h] [-m| -o file] [-v]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-v Prints verbosely

113

D.5 Computing Monotonic Fault Tree

The compute fault tree is the command to compute fault trees for monotonic systems,
using the standard BDD-based engine.

usage: compute_fault_tree [-f] [-h] [-m| -o file] [-N NR_FAIL]

[-d] [-t [-Q]] [-e] [-p [-S]]

[-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go

xSAP > compute_fault_tree -e -t "property-text"

The compute fault tree bmc is the command to compute fault trees for monotonic sys-
tems, using the SAT-based engine.

114

usage: compute_fault_tree_bmc [-h] [-m| -o file] [-k length] [-l loopback]

[-T mcs] [-N NR_FAIL] [-d] [-t [-Q]] [-e]

[-p [-S]] [-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-l loop Set loopback value to loop

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_fault_tree_bmc -e -t "property-text"

The compute fault tree bmc inc is the command to compute fault trees for monotonic
systems, using the SAT-based engine and incremental verification. It requires an incremental
SAT solver.

usage: compute_fault_tree_bmc_inc [-h] [-m| -o file] [-k length]

115

[-l loopback] [-T mcs] [-N NR_FAIL]

[-d] [-t [-Q]]

[-e] [-p [-S]] [-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-l loop Set loopback value to loop

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_fault_tree_bmc_inc -e -t "property-text"

The compute fault tree sbmc inc is the command to compute fault trees for monotonic
systems, using the SAT-based engine, next bounded model checking and incremental verifica-
tion. It requires an incremental SAT solver.

116

usage: compute_fault_tree_sbmc_inc [-h] [-m| -o file] [-k length]

[-T mcs] [-N NR_FAIL] [-d] [-t [-Q]]

[-e] [-p [-S]] [-V] [-B]

[-c] [-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-V Does not perform virtual unrolling

-B Adds blocking clauses at all time steps

-c Performs completeness check

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_fault_tree_sbmc_inc -e -t "property-text"

The compute fault tree bmc bdd is the command to compute fault trees for monotonic
systems, using both the BDD-based and the SAT-based engine.

117

usage: compute_fault_tree_bmc_bdd [-h] [-m| -o file] [-k length]

[-l loopback] [-T mcs]

[-N NR_FAIL] [-d]

[-t [-Q]] [-e] [-p [-S]]

[-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-l loop Set loopback value to loop

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic

form (python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

The compute fault tree bmc inc bdd is the command to compute fault trees for mono-
tonic systems, using both the BDD-based and the SAT-based engine. It requires an incremen-
tal SAT solver.

usage: compute_fault_tree_bmc_inc_bdd [-h] [-m| -o file] [-k length]

[-l loopback] [-T mcs] [-N NR_FAIL]

[-d] [-t [-Q]] [-e]

[-p [-S]] [-x "prefix_string"]

118

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-l loop Set loopback value to loop

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic

form (python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go

xSAP > go_bmc

xSAP > compute_fault_tree_bmc_inc_bdd -e -t "property-text"

The compute fault tree sbmc inc bdd is the command to compute fault trees for mono-
tonic systems, using both the BDD-based and the SAT-based engine, simple bounded model
checking and incremental verification. It requires an incremental SAT solver.

usage: compute_fault_tree_sbmc_inc_bdd [-h] [-m | -o file] [-k length]

[-T mcs] [-N NR_FAIL] [-d] [-t [-Q]]

119

[-e] [-p [-S]]

[-V] [-B] [-c] [-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-d Generates a dynamic fault tree

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-V Does not perform virtual unrolling

-B Adds blocking clauses at all time steps

-c Performs completeness check

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go

xSAP > go_bmc

xSAP > compute_fault_tree_sbmc_inc_bdd -e -t "property-text"

The compute fault tree msat bmc is the command to compute fault trees for monotonic
systems, using the SMT-based engine. It requires an SMT solver.

120

usage: compute_fault_tree_msat_bmc [-h] [-m | -o file] [-k length]

[-l loopback] [-T mcs] [-N NR_FAIL]

[-t [-Q]] [-e] [-p [-S]] [-M]

[-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-k length Set problem length to length

-l loop Set loopback value to loop

-T mcs Limit number of cut sets to be computed to mcs

-N NR_FAIL Limit number of possible failures to NR_FAIL

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-M Set the generation of monotonic cutsets to FALSE

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given INVARSPEC or LTLSPEC property as !TLE

-P name Use given INVARSPEC or LTLSPEC property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_msat

xSAP > compute_fault_tree_msat_bmc -e -t "property-text"

The compute fault tree param is the command to compute fault trees for monotonic
systems, using an engine based on IC3 and parameter synthesis, with a SAT or SMT back-
end.

121

usage: compute_fault_tree_param [-h] [-m| -o file] [-t [-Q] [-I]] [-e]

[-p [-S]] [-N NR_FAIL]

[-x "prefix_string"] [-i] [-L][-k depth]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-N NR_FAIL Limit number of possible failures to NR_FAIL

-x prefix Prefixes generated file names with "prefix"

-i Forces the use of SMT for finite models

-L Disable layering

-k depth Use an initial BMC run up to the given depth

-I Generates intermediate fault trees for each layer

-n index Use given invar property as !TLE

-P name Use given invar property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_fault_tree_param -e -t "property-text"

The compute fault tree param klive is the command to compute fault trees for mono-
tonic systems, using the SAT-based engine and an invariant checking termination procedure
based on IC3.

122

usage: compute_fault_tree_param_klive [-h] [-m| -o file] [-t [-Q] [-I]] [-L]

[-A] [-e] [-p [-S]] [-N NR_FAIL]

[-x "prefix_string"] [-i]

[-n index | -P name | "ltl-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-L Disable layering

-A Force the computing of upper and lower probability bounds

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic

form (python and octave/matlab)

-N NR_FAIL

-x prefix Prefixes generated file names with "prefix"

-i Forces the use of SMT for finite models

-I Generates intermediate fault trees for each layer

-n index Use given ltl property as !TLE

-P name Use given ltl property (from name) as !TLE

ltl-expr Use given expression as TLE

Options -n, -P and "ltl-expr" are mutually exclusive.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "ltl-expr"

represents a bad condition.

123

D.6 Computing Non Monotonic Fault Tree

The compute prime implicants computes prime implicants and generates a fault tree for a
top level event given as a simple expression; non-failure variables are existentially quantified.

usage: compute_prime_implicants [-h] [-m| -o file] [-t] [-e] [-p [-S]]

[-x "prefix_string"]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-t Generates fault tree

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic

form (python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-n index Use given LTL property as !TLE

-P name Use given LTL property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "next-expr" are mutually exclusive.

If none is specified, all INVAR properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can always fly"). Instead the expression in "next-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go

xSAP > compute_prime_implicants -e -t "property-text"

The compute prime implicants param computes prime implicants and generates a fault
tree for a top level event given as a simple expression, using parameter synthesis.

usage: compute_prime_implicants_param [-h] [-m| -o file] [-t [-Q]]

[-e] [-p [-S]]

[-x "prefix_string"] [-i] [-L]

[-n index | -P name | "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

124

the "PAGER" shell variable if defined,

else through UNIX "more"

-o file Writes the generated output to "file"

-t Generates fault tree

-Q Disables construction of ordered FT and computes probability

only for the top level event (to speedup computation)

-e Prints counterexample traces

-p Computes probability

-S Computes probability also in symbolic form

(python and octave/matlab)

-x prefix Prefixes generated file names with "prefix"

-i Forces the use of SMT for finite models

-L Disable layering

-n index Use given invar property as !TLE

-P name Use given invar property (from name) as !TLE

next-expr Use given expression as TLE

Options -n, -P and "simple-expr" are mutually exclusive.

If none is specified, all invar properties will be used to generate

multiple fault trees. In this case, the index of each property will

appear in the prefix of generated files.

Also notice that -n and -P take a property which is supposed to

hold in the nominal model, i.e. that describes a good behaviour

("the airplane can fly"). Instead the expression in "simple-expr"

represents a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_prime_implicants_param -e -t "property-text"

125

D.7 Computing FMEA Table

The compute fmea table command is the command to compute fmea tables, using the
standard BDD-based engine.

usage: compute_fmea_table [-h] [-m| -o file] [-c] [-d] [-N NR_FAIL] [-t]

[-e] [-x "prefix_string"]

[-n <props> | -P <props> | "next-expr" ... "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-c Generates a compact FMEA table

-d Generates a dynamic FMEA table

-N NR_FAIL set number of failures to NR_FAIL (default: 1)

-o file Writes the generated output to "file"

-t Generates fmea table

-e Prints counterexample traces

-x prefix Prefixes generated file names with "prefix"

-n "props" A subset of INVARSPEC or LTLSPEC properties whose indices are given

as argument. Indices are separated by comma ’,’ or colon ’:’.

Ranges are allowed where lower and upper bounds are separated

by dash ’-’. For example "1:3-6:8" for indices 1,3,4,5,6,8

-P "props" A subset of INVARSPEC or LTLSPEC properties whose names are given

as argument. Names are separated by comma ’,’ or colon ’:’.

Options -n, -P and "next-expr" ... "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used.

Also notice that -n and -P take properties which are supposed to

hold in the nominal model, i.e. that describe a good behaviour

("the airplane can always fly"). Instead the expressions in "next-expr"

represent a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go

xSAP > compute_fmea_table -t "property-text"

The compute fmea table bmc inc command is the command to compute FMEA tables,
using the SAT-based engine and incremental verification. It requires an incremental SAT
solver.

usage: compute_fmea_table_bmc_inc [-h] [-m| -o file] [-k length] [-l loopback]

[-c] [-N NR_FAIL] [-t] [-e] [-x "prefix_string"]\

[-n <props> | -P <props> | "next-expr" ... "next-expr"]

126

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-k length set problem length to length

-l loop set loopback value to loop

-c Generates a compact FMEA table

-N NR_FAIL set number of failures to NR_FAIL (default: 1)

-o file Writes the generated output to "file"

-t Generates fmea table

-e Prints counterexample traces

-x prefix Prefixes generated file names with "prefix"

-n "props" A subset of INVARSPEC or LTLSPEC properties whose indices are given

as argument. Indices are separated by comma ’,’ or colon ’:’.

Ranges are allowed where lower and upper bounds are separated

by dash ’-’. For example "1:3-6:8" for indices 1,3,4,5,6,8

-P "props" A subset of INVARSPEC or LTLSPEC properties whose names are given

as argument. Names are separated by comma ’,’ or colon ’:’.

Options -n, -P and "next-expr" ... "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used.

Also notice that -n and -P take properties which are supposed to

hold in the nominal model, i.e. that describe a good behaviour

("the airplane can always fly"). Instead the expressions in "next-expr"

represent a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_fmea_table_bmc_inc -t "property-text"

The compute fmea table msat bmc command is the command to compute FMEA tables,
using the SMT-based engine. It requires an SMT solver.

usage: compute_fmea_table_msat_bmc [-h] [-m| -o file] [-k length] [-l loopback]

[-c] [-N NR_FAIL] [-t] [-e] [-x "prefix_string"]

[-n <props> | -P <props> | "next-expr" ... "next-expr"]

-h Prints the command usage

-m Pipes output through the program specified by

the "PAGER" shell variable if defined,

else through UNIX "more"

-k length set problem length to length

-l loop set loopback value to loop

-c Generates a compact FMEA table

127

-N NR_FAIL set number of failures to NR_FAIL (default: 1)

-o file Writes the generated output to "file"

-t Generates fmea table

-e Prints counterexample traces

-x prefix Prefixes generated file names with "prefix"

-n "props" A subset of INVARSPEC or LTLSPEC properties whose indices are given

as argument. Indices are separated by comma ’,’ or colon ’:’.

Ranges are allowed where lower and upper bounds are separated

by dash ’-’. For example "1:3-6:8" for indices 1,3,4,5,6,8

-P "props" A subset of INVARSPEC or LTLSPEC properties whose names are given

as argument. Names are separated by comma ’,’ or colon ’:’.

Options -n, -P and "next-expr" ... "next-expr" are mutually exclusive.

If none is specified, all INVARSPEC and LTLSPEC (which can be converted

into INVARSPEC) properties will be used.

Also notice that -n and -P take properties which are supposed to

hold in the nominal model, i.e. that describe a good behaviour

("the airplane can always fly"). Instead the expressions in "next-expr"

represent a bad state, a failure TLE.

Example

xSAP > set input_file model.smv

xSAP > go_msat

xSAP > compute_fmea_table_msat_bmc -t "property-text"

128

D.8 Computing MTCS

usage: compute_mode_transition_cut_sets [-h] [-v] [-e] [-M] [-s] [-i] [-L]

[-t] [-o format] [-g] [-x prefix]

expr_1 ... expr_n

-h Prints the command usage

-v Use provided expressions as variables. The states are computed

as all evaluations of the variables

-e Compute only transitions from the first mode to the others

-M Turn off monotonicity

-s Use strict MTCS computation

-i Forces the use of SMT for finite models

-L Disable layering

-t Print XML output in file

-o format Print visual output in file (dot, tex)

-g Paging, print each mode transition in separate file

-x prefix Prefixes generated file names with "prefix"

Example

xSAP > set input_file model.smv

xSAP > go_bmc

xSAP > compute_mode_transition_cut_sets -t ’mode-expression’

’mode-expression’

’mode-expression’

129

D.9 Checking diagnosability

The build twin plant command is used to build the twin plant of a given model. Note that
option “-p” is always required to be set, and kept only for backward-compatibility reasons.

usage: build_twin_plant -o <str> [-a] [-f] [-A] [-p] [-t <str>] [-h]

-o file containing list of observable variables

[-a] asynchronous twinplant composition [option is deprecated] (default: false)

[-f] configure twin plant for synthesis [option is deprecated] (c1/c2 specification)

[-A] configure twin plant for synthesis (ASL specification)

[-p] use history variables to encode twin plant

[-t] name of delta_t variable [option is deprecated]

[-h] prints command usage

Example

xSAP > set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP > build_twin_plant -o examples/FDI/diag/G1_observables.obs -p

The diag load asl spec command is used to load a diagnosis condition for diagnosability
analysis.

usage: diag_load_asl_spec [-f <str>|-a <str> -c <str> -d <int> [-x <str>]] [-p] [-h]

-f file containing the list of ASL specifications

-a ASL alarm type (exact/bounded/finite)

-c diagnosis condition (LTL expression)

-d delay bound (for exact and bounded delay)

[-x] context (LTL expression)

[-p] remove existing properties from property manager

[-h] prints command usage

Example

xSAP > set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP > build_twin_plant -o examples/FDI/diag/G1_observables.obs

xSAP > diag_load_asl_spec -p -a finite -c "(CN.cmd_G1 = cmd_on &

(SC.G1.Gen_StuckOff.mode != NOMINAL |

SC.G1.Gen_StuckOff.event = stuckAt_Off#failure))"

Any available model-checking command can then be used to verify the generated diagnos-
ability proof obligations. Multiple specifications can be loaded from a file using the option
-f.

xSAP > set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP > build_twin_plant -o examples/FDI/diag/G1_observables.obs -p

xSAP > diag_load_asl_spec -p -f examples/FDI/diag/G1.asl

130

D.10 Minimum observables set analysis

The diag optimize observables asl command is used to synthesize a sets of observables
guaranteeing diagnosability.

usage: diag_optimize_observables_asl [-f <str>|-a <str> -c <str> -d <int> [-x <str>]]

[-e <str>] [-h]

-f file containing the list of ASL specifications

-a ASL alarm type (exact/bounded/finite)

-c diagnosis condition (LTL expression)

-d delay bound (for exact and bounded delay)

[-x] context (LTL expression)

[-e] engine (bmc/bmc_ic3; default: bmc_ic3)

[-h] prints command usage

Similarly as for diag load asl spec it is possible to specify either a single alarm specifi-
cation, or multiple alarm specifications through the use of an ASL specification file. file. If a
specification is given, the result is a sensor configuration that satisfies all alarm conditions at
the same time.

xSAP > set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP > build_twin_plant -o examples/FDI/diag/G1_observables.obs -p -A

xSAP > go_bmc

xSAP > diag_optimize_observables_asl -f examples/FDI/diag/G1.asl

131

D.11 Synthesizing FD components

The synth asynchronous composition semantics environment variable sets the semantics
of the composition between the FD and the system. If set to 0, it enforces the synchronous
semantics; if set to 1, it enforces the asynchronous semantics. For SMV models, synchronous
semantics should be used. See [10] for additional information.

Example

xSAP > set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP > set synth_asynchronous_composition_semantics 1

xSAP > go

The synth FD command is used to generate the FD component of a given model.

Performs the FD Synthesis taking into account the

observables list and the alarm specifications.

usage: synth_FD [-h] -o <file> -f <file>

-o file containing list of observable variables

-f file containing the ASL specification

-h prints the command usage.

Example

xSAP> set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP> set synth_asynchronous_composition_semantics 0

xSAP> go

xSAP> synth_FD -o extended_SC_TMG.obs

-f extended_SC_TMG.asl

With extended SC TMC.obs:

CN.cmd_G1

SC.G1.state

With extended SC TMC.asl:

NAME: FAULT

CONDITION: CN.cmd_G1 = cmd_on & (SC.G1.Gen_StuckOff.mode != NOMINAL &

SC.G1.Gen_StuckOff.event = stuckAt_Off#failure)

TYPE: bounded

CONTEXT: GF (CN.cmd_G2 = cmd_on)

DELAY: 5

The synth dump fdir command is used to dump (to file) the generate model containing
also the FD component.

usage: synth_dump_fdir [-o <file>] [-c] [-s]

-o <file> The file on which to print

-c Dumps the FDIR combined within the original FSM

-s Prints some additional statistics

-v Be verbose in the transition relation printing

132

Example

xSAP> set input_file examples/FDI/extended_SC_TMG_empty_controller.smv

xSAP> set synth_asynchronous_composition_semantics 0

xSAP> go

xSAP> synth_FD -o extended_SC_TMG.obs

-f extended_SC_TMG.asl

xSAP> synth_dump_fdir -o G1_synthesized_model.smv -c

133

	Contents
	Introduction
	Methodological Overview
	A Formal Approach to System Design
	Tool support with nuXmv and xSAP

	Fault Extension
	Manual Fault Extension
	XML Format

	Automated Fault Extension
	Fault Extension Instructions
	Fault Slice
	Fault modes
	Global Dynamics Model

	Common Cause
	The Fault Extension Instruction language
	FEI semantics
	Common Causes

	The Faults Library
	Effect Model
	Local Dynamics

	Safety Assessment
	Declaring the Fault Variables
	Fault Tree Generation
	Latent Faults

	Failure Modes and Effect Analysis
	MTCS Analysis
	Common Cause Analysis

	TFPG Analysis
	Timed Failure Propagation Graphs
	Terminology
	TFPG Definition
	Semantics

	Reasoning Tasks
	Behavioral Validation
	Synthesis
	Tightening
	Possibility, Necessity, Consistency, and Activability
	Refinement
	Diagnosis
	Filtering

	TFPG Formats
	Textual Format
	XML Format

	Fault Detection And Isolation
	Diagnosability Analysis
	Generation of minimum observables set
	Synthesis of diagnoser
	Effectiveness analysis
	Files format
	Observables file
	Alarm Specification file

	Triple Generator Example
	Informal Description
	The Plant
	Controller behavior
	System Requirements

	SMV modeling
	Concrete example of Fault Extension
	Nominal Model
	Fault Extension Instruction
	Modules and Module Instances in FEI
	Properties
	Formal properties
	Choose Fault Templates
	Result of Fault Extension
	Safety Assessment
	Adding Common Cause
	Adding Fault Probability
	Latent Faults

	TFPG Analysis
	Associations file
	Synthesis
	Behavioral Validation
	Tightening
	Statistics Information
	Possibility, Necessity, Consistency and Activability
	Diagnosis
	Refinement
	Filtering

	Fault Detection and Isolation
	Diagnosability analysis
	Minimum observables set analysis
	Synthesis of a diagnoser
	Effectiveness analysis

	Conclusions and Future Directions
	References
	Installation
	Prerequisites
	Platform-independent
	Microsoft Windows (64 bit and 32 bit)
	Linux 64 bit

	Syntax Directed Editor
	Script Guide
	Model Extender
	Fault Tree Analysis
	FMEA Table Analysis
	MTCS Analysis
	Diagnosability
	Diagnosability Analysis
	Generation of Minimum Observables Set

	FD Synthesis
	TFPG
	Format Conversion
	TFPG Generation
	TFPG Synthesis
	TFPG Behavioral Validation
	TFPG Tightening
	TFPG Effectiveness Validation
	TFPG Statistics Information Extraction
	TFPG Properties Check
	TFPG Scenario Diagnosis
	TFPG Refinement Check
	TFPG Filtering

	Viewers
	Trace viewer
	Fault Tree viewer
	FMEA Table viewer
	TFPG viewer

	Command Guide
	Invoking xSAP
	Properties vs TLEs
	Automated Fault extension
	Printing the Fault Variables
	Computing Monotonic Fault Tree
	Computing Non Monotonic Fault Tree
	Computing FMEA Table
	Computing MTCS
	Checking diagnosability
	Minimum observables set analysis
	Synthesizing FD components

